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1. Steiner symmetrization

Let A be a convex body in Rd , u ∈ Sd−1. Steiner symmetrization

A→ SuA

is defined by ...

Properties :

1) SuA is convex.

2) Vol(SuA) = Vol(A).

3) Mes(∂(SuA)) ≤ Mes(∂(A)).

Youri Davydov On random symmetrizations of convex bodies



2. Minkowski symmetrization

Let A be a convex body in Rd , u ∈ Sd−1.

Minkowski (or Blachke) symmetrization BuA is defined by

BuA =
1
2
(A

⊕
πuA),

where
⊕

is Minkowski addition, πu is the symmetry with respect to u⊥.

Properties :

1) BuA is a convex body.

2) Let fA be the support function of A : fA(θ) = supx∈A〈θ, x〉, θ ∈ Sd−1.

Let M?(A) =
∫
Sd−1 fAdσ, where σ is the normalized Haar measure on Sd−1.

Then M?(BuA) = M?(A).

3) Vol(BuA) ≥ Vol(A).

4) SuA ⊂ BuA.

Youri Davydov On random symmetrizations of convex bodies



3. Problem

Let {uk}, uk ∈ Sd−1 be a sequence of directions.

Let
SnA = Sun (Sun−1 . . . (Su1A) . . .),

BnA = Bun (Bun−1 . . . (Bu1A) . . .).

Asymptotic behaviour of SnA and BnA when n→∞ ?

In particular, what can we observe if {uk} is a sequence of i.i.d. directions uniformly
distributed on Sd−1 ?

Intuitively it seems credible to expect that these sequences will round up and will
converge to limit balls.
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4. Known results

Theorem A (Mani-Levitska, 1986)

Let A be a convex body in Rd , Vol(A) = Vol(D), D = B(0, 1).
Let {uk} be i.i.d. uniformly distributed directions.
Then a.s.

dH(SnA, D)→ 0,

where dH is Hausdorff distance.

Corollary. Solution of isoperimeter problem.
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5. Known results

Theorem B (Klartag, 2003)

Let A be a convex body in Rd . Denote L = M?(A).
Without loss of generality we can suppose that Vol(A) = Vol(D).

Then

1) ∃ C ,C ′ > 0 and a sequence {uk} of directions such that

dH(BnA, LD) ≤ C exp {−C ′n}.

2) ∃ C ,C ′ > 0 and a sequence {uk} of directions such that

dH(SnA, D) ≤ C exp {−C ′
√
n}.
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6. Our results

Theorem 1.

Let {uk} be a sequence of directions such that
1) for all convex body A

dH(SnA, DA)→ 0,

where DA is the centered ball such that Vol(DA) = Vol(A).

Then
dH(BnA, M∗D)→ 0.

2) If for each convex body A

dH(BnA, M∗A)→ 0,

Then
dH(SnA, DA)→ 0.
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7. Our results

Theorem 2.

Let A be a convex body in Rd , L = M?(A). Let {uk} be i.i.d. directions with
common distribution µ.

Suppose that µ� σ and for σ-almost all θ ∈ Sd−1

dµ
dσ

(θ) ≤ a <
d

d − 1
.

Then ∃ C ,C ′ > 0 such that with probability 1 for n ≥ n(ω)

dH(BnA, LD) ≤ C exp {−C ′n}.

Comments

a) d = 2
b) d ≥ 3
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8. Our results

Theorem 3.

Let A be a convex body in Rd , Vol(A) = Vol(D), D = B(0, 1).
Let {uk} be i.i.d. directions with common distribution µ.
Suppose that µ� σ and for σ-almost all θ ∈ Sd−1

dµ
dσ

(θ) ≤ a <
d

d − 1
.

Then ∃ C ,C ′ > 0 such that with probability 1 for n ≥ n(ω)

dH(SnA, D) ≤ C exp {−C ′
√
n}.

Comments

Passage from BnA to SnA.
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9. Conclusion

Open questions

1 Exponential rate for SnA.

2 Conditions on µ.

3 Nonrandom asymptotically uniformly distributed directions.
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