On random symmetrizations of convex bodies

Youri Davydov

University of Lille 1, France

(Joint work with David Coupier)

Rouen 2012

크 / 프

Let A be a convex body in \mathbb{R}^d , $u \in \mathbb{S}^{d-1}$. Steiner symmetrization

$$A \rightarrow S_u A$$

is defined by ...

Properties :

- 1) $S_u A$ is convex.
- 2) $\operatorname{Vol}(S_u A) = \operatorname{Vol}(A)$.
- 3) $Mes(\partial(S_uA)) \leq Mes(\partial(A)).$

글 > 글

2. Minkowski symmetrization

Let A be a convex body in \mathbb{R}^d , $u \in \mathbb{S}^{d-1}$.

Minkowski (or Blachke) symmetrization $B_u A$ is defined by

$$B_{u}A=\frac{1}{2}(A\bigoplus \pi_{u}A),$$

where \bigoplus is Minkowski addition, π_u is the symmetry with respect to u^{\perp} .

Properties :

1) $B_u A$ is a convex body.

2) Let f_A be the support function of $A : f_A(\theta) = \sup_{x \in A} \langle \theta, x \rangle$, $\theta \in \mathbb{S}^{d-1}$. Let $M^*(A) = \int_{\mathbb{S}^{d-1}} f_A d\sigma$, where σ is the normalized Haar measure on \mathbb{S}^{d-1} . Then $M^*(B_u A) = M^*(A)$.

3)
$$\operatorname{Vol}(B_u A) \geq \operatorname{Vol}(A)$$
.

4)
$$S_u A \subset B_u A$$
.

∃ > ∃

Let $\{u_k\}, u_k \in \mathbb{S}^{d-1}$ be a sequence of directions.

Let

$$S_n A = S_{u_n}(S_{u_{n-1}} \dots (S_{u_1}A) \dots),$$

$$B_n A = B_{u_n}(B_{u_{n-1}} \dots (B_{u_1}A) \dots).$$

Asymptotic behaviour of $S_n A$ and $B_n A$ when $n \to \infty$?

In particular, what can we observe if $\{u_k\}$ is a sequence of i.i.d. directions uniformly distributed on \mathbb{S}^{d-1} ?

Intuitively it seems credible to expect that these sequences will round up and will converge to limit balls.

Theorem A (Mani-Levitska, 1986)

Let A be a convex body in \mathbb{R}^d , Vol(A) = Vol(D), D = B(0, 1). Let $\{u_k\}$ be i.i.d. uniformly distributed directions. Then a.s.

$$d_H(S_nA, D) \rightarrow 0,$$

where d_H is Hausdorff distance.

Corollary. Solution of isoperimeter problem.

프 > 프

Theorem B (Klartag, 2003)

Let A be a convex body in \mathbb{R}^d . Denote $L = M^*(A)$. Without loss of generality we can suppose that Vol(A) = Vol(D).

Then

1) $\exists C, C' > 0$ and a sequence $\{u_k\}$ of directions such that

 $d_H(B_nA, LD) \leq C \exp\{-C'n\}.$

2) $\exists C, C' > 0$ and a sequence $\{u_k\}$ of directions such that

 $d_H(S_nA, D) \leq C \exp\{-C'\sqrt{n}\}.$

프 🖌 👘 프

Theorem 1.

Let $\{u_k\}$ be a sequence of directions such that 1) for all convex body A

 $d_H(S_nA, D_A) \rightarrow 0,$

where D_A is the centered ball such that $Vol(D_A) = Vol(A)$.

Then

 $d_H(B_nA, M^*D) \rightarrow 0.$

2) If for each convex body A

 $d_H(B_nA, M^*A) \rightarrow 0,$

Then

 $d_H(S_nA, D_A) \rightarrow 0.$

< ∃ >

э

Theorem 2.

Let A be a convex body in \mathbb{R}^d , $L = M^*(A)$. Let $\{u_k\}$ be i.i.d. directions with common distribution μ .

Suppose that $\mu \ll \sigma$ and for σ -almost all $\theta \in \mathbb{S}^{d-1}$

$$rac{d\mu}{d\sigma}(heta)\leq {\sf a}<rac{d}{d-1}.$$

Then $\exists C, C' > 0$ such that with probability 1 for $n \ge n(\omega)$

$$d_H(B_nA, LD) \leq C \exp\{-C'n\}.$$

Comments	
a) $d = 2$ b) $d \ge 3$	

< 注→ 注

Theorem 3.

Let A be a convex body in \mathbb{R}^d , Vol(A) = Vol(D), D = B(0, 1). Let $\{u_k\}$ be i.i.d. directions with common distribution μ . Suppose that $\mu \ll \sigma$ and for σ -almost all $\theta \in \mathbb{S}^{d-1}$

$$rac{d\mu}{d\sigma}(heta)\leq \mathsf{a}<rac{d}{d-1}.$$

Then $\exists C, C' > 0$ such that with probability 1 for $n \ge n(\omega)$

$$d_H(S_nA, D) \leq C \exp\{-C'\sqrt{n}\}.$$

Comments

Passage from B_nA to S_nA .

< 注→ 注

Open questions

- **1** Exponential rate for S_nA .
- **2** Conditions on μ .
- **③** Nonrandom asymptotically uniformly distributed directions.

프 > 프

- P. Mani-Levitska, Random Steiner symmetrizations, Stud.Scient.Math.Hungarica, 1986, v. 21, pp. 373-378.
- B. Klartag, Rate of convergence of geometric symmetrizations, GAFA, 2004, v. 21, N 6, pp. 1322-1338.