◆□▶ ◆□▶ ★□▶ ★□▶ ● ● ●

Continuum percolation and phase transition for multi-type Quermass Model

David Dereudre, Laboratoire Paul Painlevé, University Lille 1 (Joint work with David Coupier)

Workshop Stochastic Geometry and its Applications 28th March, Rouen

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

State spaces

•
$$\mathcal{E} = \mathbb{R}^2 \times \mathbb{R}^+ \times \{1, \dots, K\}$$
 with $K \ge 1$. We denote by $X = (x, R, k)$ an element in \mathcal{E} .

Percolation.

Phase transition

うして ふゆう ふほう ふほう ふしつ

State spaces

- $\mathcal{E} = \mathbb{R}^2 \times \mathbb{R}^+ \times \{1, \dots, K\}$ with $K \ge 1$. We denote by X = (x, R, k) an element in \mathcal{E} .
- $\mathcal{M}(\mathcal{E})$ the space of locally finite configurations in \mathcal{E} . We denote by γ a configuration in $\mathcal{M}(\mathcal{E})$ and by $\bar{\gamma}$ its associated germ-grain set

$$\bar{\gamma} = \bigcup_{(x,R,k)\in\gamma} B(x,R).$$

Percolation.

Phase transition

うして ふゆう ふほう ふほう ふしつ

State spaces

•
$$\mathcal{E} = \mathbb{R}^2 \times \mathbb{R}^+ \times \{1, \dots, K\}$$
 with $K \ge 1$. We denote by $X = (x, R, k)$ an element in \mathcal{E} .

• $\mathcal{M}(\mathcal{E})$ the space of locally finite configurations in \mathcal{E} . We denote by γ a configuration in $\mathcal{M}(\mathcal{E})$ and by $\bar{\gamma}$ its associated germ-grain set

$$\bar{\gamma} = \bigcup_{(x,R,k)\in\gamma} B(x,R)$$

• π^z the Poisson Point Process on \mathcal{E} with intensity $z\lambda \otimes Q \otimes \mathcal{U}_K$ where z > 0, Q probability measure on \mathbb{R}^+ and \mathcal{U}_k the uniform distribution on $\{1, \ldots, K\}$.

Percolation.

Phase transition

State spaces

•
$$\mathcal{E} = \mathbb{R}^2 \times \mathbb{R}^+ \times \{1, \dots, K\}$$
 with $K \ge 1$. We denote by $X = (x, R, k)$ an element in \mathcal{E} .

• $\mathcal{M}(\mathcal{E})$ the space of locally finite configurations in \mathcal{E} . We denote by γ a configuration in $\mathcal{M}(\mathcal{E})$ and by $\bar{\gamma}$ its associated germ-grain set

$$\bar{\gamma} = \bigcup_{(x,R,k)\in\gamma} B(x,R)$$

- π^z the Poisson Point Process on \mathcal{E} with intensity $z\lambda \otimes Q \otimes \mathcal{U}_K$ where z > 0, Q probability measure on \mathbb{R}^+ and \mathcal{U}_k the uniform distribution on $\{1, \ldots, K\}$.
- π_{Λ}^{z} the Poisson Point Process on $\mathcal{E}_{\Lambda} := \Lambda \times \mathbb{R}^{+} \times \{1, \ldots, K\}$ with intensity $z\lambda_{\Lambda} \otimes Q \otimes \mathcal{U}_{K}$.

Percolation.

Phase transition

ション ふゆ マ キャット しょう くりく

Multi-type Boolean model

• Non-overlapping density : For any configuration γ in \mathcal{E}_{Λ}

 $f_{\Lambda}(\gamma) = \mathrm{I}_{\mathcal{A}_{\mathrm{nob}}}(\gamma),$

where $\gamma \in \mathcal{A}_{nob} \subset \mathcal{M}(\mathcal{E})$ if and only if $\forall (x, R, k), (x', R', k') \in \gamma$

$$k \neq k' \Rightarrow |x - x'| > R + R'.$$

Percolation.

Phase transition

うして ふゆう ふほう ふほう ふしつ

Multi-type Boolean model

 Non-overlapping density : For any configuration γ in *E*_Λ

 $f_{\Lambda}(\gamma) = \mathbb{I}_{\mathcal{A}_{\mathrm{nob}}}(\gamma),$

where $\gamma \in \mathcal{A}_{nob} \subset \mathcal{M}(\mathcal{E})$ if and only if $\forall (x, R, k), (x', R', k') \in \gamma$

$$k \neq k' \Rightarrow |x - x'| > R + R'.$$

• Multi-type Boolean model : -On Λ :

$$P_{\Lambda}(d\gamma) = rac{1}{\pi^z_{\Lambda}(\mathcal{A}_{
m nob})} f_{\Lambda}(\gamma) \pi^z_{\Lambda}(d\gamma).$$

Percolation.

Phase transition

Multi-type Boolean model

• Non-overlapping density : For any configuration γ in \mathcal{E}_{Λ}

 $f_{\Lambda}(\gamma) = \mathbb{I}_{\mathcal{A}_{\text{nob}}}(\gamma),$ where $\gamma \in \mathcal{A}_{\text{nob}} \subset \mathcal{M}(\mathcal{E})$ if and only if $\forall (x, R, k), (x', R', k') \in \gamma$

$$k \neq k' \Rightarrow |x - x'| > R + R'.$$

• Multi-type Boolean model : -On Λ :

$$P_{\Lambda}(d\gamma) = \frac{1}{\pi_{\Lambda}^{z}(\mathcal{A}_{\text{nob}})} f_{\Lambda}(\gamma) \pi_{\Lambda}^{z}(d\gamma).$$

-On \mathbb{R}^2 : Gibbs (or Markov) modifications. We can prove that there exists a such model.

・ロト ・雪ト ・ヨト ・ヨト

ъ.

Representation of the multi-type Boolean model on Λ

For K = 2: red particle (k = 1) and blue particle (k = 2). A one-type Boolean model on Λ with density $2^{N_{cc}(\bar{\gamma})}$:

$$Q_{\Lambda}(d\gamma) = rac{1}{Z_{\Lambda}} 2^{N_{cc}(\bar{\gamma})} \pi^{z}_{\Lambda}(d\gamma).$$

Representation of the multi-type Boolean model on Λ

For K = 2: red particle (k = 1) and blue particle (k = 2). A one-type Boolean model on Λ with density $2^{N_{cc}(\bar{\gamma})}$:

$$Q_{\Lambda}(d\gamma) = \frac{1}{Z_{\Lambda}} 2^{N_{cc}(\bar{\gamma})} \pi_{\Lambda}^{z}(d\gamma).$$

In colouring independently the connected components, we obtain a 2-type boolean model on Λ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □□ の�?

The multi-type Quermass model on Λ

• Quermass density : For any configuration γ in \mathcal{E}_{Λ}

$$H(\gamma) = \theta_1 \mathcal{A}(\bar{\gamma}) + \theta_2 \mathcal{L}(\bar{\gamma}) + \theta_3 \chi(\bar{\gamma}),$$

$$f_{\Lambda}(\gamma) = \mathbb{I}_{\mathcal{A}_{\text{nob}}}(\gamma)e^{-H(\gamma)}.$$

Percolation.

Phase transition

▲□▶ ▲□▶ ▲□▶ ▲□▶ □□ の�?

The multi-type Quermass model on Λ

• Quermass density : For any configuration γ in \mathcal{E}_{Λ}

$$H(\gamma) = \theta_1 \mathcal{A}(\bar{\gamma}) + \theta_2 \mathcal{L}(\bar{\gamma}) + \theta_3 \chi(\bar{\gamma}),$$

$$f_{\Lambda}(\gamma) = \mathbb{I}_{\mathcal{A}_{\text{nob}}}(\gamma)e^{-H(\gamma)}.$$

• Multi-type Quermass model on Λ :

$$P_{\Lambda}(d\gamma) = \frac{1}{Z_{\Lambda}} f_{\Lambda}(\gamma) \pi_{\Lambda}^{z}(d\gamma).$$

The multi-type Quermass model on Λ

• Quermass density : For any configuration γ in \mathcal{E}_{Λ}

$$H(\gamma) = \theta_1 \mathcal{A}(\bar{\gamma}) + \theta_2 \mathcal{L}(\bar{\gamma}) + \theta_3 \chi(\bar{\gamma}),$$

$$f_{\Lambda}(\gamma) = \mathbb{I}_{\mathcal{A}_{\text{nob}}}(\gamma)e^{-H(\gamma)}.$$

• Multi-type Quermass model on Λ :

$$P_{\Lambda}(d\gamma) = \frac{1}{Z_{\Lambda}} f_{\Lambda}(\gamma) \pi_{\Lambda}^{z}(d\gamma).$$

- References :
 - $K = 1, \theta_1 \ge 0, \theta_2 = \theta_3 = 0$: Widom Rowlinson (70)
 - K = 1 : Likos Mecke Wagner (95), Mecke (96), Kendall Van Lieshout Baddeley (99).
 - $K > 1, \theta_1 \ge 0, \theta_2 = \theta_3 = 0$: Chayes Kotechy (95), Giacomin - Lebowitz - Maes (95)

Percolation.

Phase transition

イロト 不得下 イヨト イヨト

∃ \0<</p>\0

Exemples of one-type Quermas models

For K = 1 :

 $\theta_1 = 0, \ \theta_2 = 0.2, \ \theta_3 = 0$ $\theta_1 = 0, \ \theta_2 = 0, \ \theta_3 = 1$ $\theta_1 = -1, \ \theta_2 = -1, \ \theta_3 = 0$

Percolation.

ション ふゆ マ キャット マックタン

Representation of the multi-type Quermass model on Λ

For K = 2: A one-type Quermass model P_{Λ} on Λ with density $2^{N_{cc}(\bar{\gamma})}$:

$$Q_{\Lambda}(d\gamma) = rac{1}{Z_{\Lambda}} 2^{N_{cc}(\bar{\gamma})} P_{\Lambda}(d\gamma).$$

Example with $\theta_1 = -0.2$, $\theta_2 = 0.3$ and $\theta_3 = 0$:

Percolation.

Representation of the multi-type Quermass model on Λ

For K = 2: A one-type Quermass model P_{Λ} on Λ with density $2^{N_{cc}(\bar{\gamma})}$:

$$Q_{\Lambda}(d\gamma) = \frac{1}{Z_{\Lambda}} 2^{N_{cc}(\bar{\gamma})} P_{\Lambda}(d\gamma).$$

Example with $\theta_1 = -0.2$, $\theta_2 = 0.3$ and $\theta_3 = 0$:

In colouring independently the connected components, we obtain a 2-type Quermass model on Λ for the same parameters.

・ロト ・個ト ・ヨト ・ヨト ヨ ・ のへで

Multi-type Quermass models in \mathbb{R}^2

We assume that $Q([0, R_0]) = 1$.

• The local Quermass conditional density :

$$H_{\Lambda}(\gamma_{\Lambda}|\gamma_{\Lambda^c}) = H(\gamma_{\Lambda \oplus B(0,2R_0)}) - H(\gamma_{\Lambda \oplus B(0,2R_0) \setminus \Lambda}).$$

$$f_{\Lambda}(\gamma_{\Lambda}|\gamma_{\Lambda^c}) = \mathbb{I}_{\mathcal{A}_{\text{nob}}}(\gamma) e^{-H_{\Lambda}(\gamma_{\Lambda}|\gamma_{\Lambda^c})}.$$

Multi-type Quermass models in \mathbb{R}^2

We assume that $Q([0, R_0]) = 1$.

• The local Quermass conditional density :

$$H_{\Lambda}(\gamma_{\Lambda}|\gamma_{\Lambda^c}) = H(\gamma_{\Lambda \oplus B(0,2R_0)}) - H(\gamma_{\Lambda \oplus B(0,2R_0) \setminus \Lambda}).$$

$$f_{\Lambda}(\gamma_{\Lambda}|\gamma_{\Lambda^c}) = \mathbb{I}_{\mathcal{A}_{\text{nob}}}(\gamma)e^{-H_{\Lambda}(\gamma_{\Lambda}|\gamma_{\Lambda^c})}.$$

• Multi-type Quermass model in \mathbb{R}^2 : Any probability measure P satisfying, for each bounded Λ , the DLR equation

$$P(d\gamma_{\Lambda}|\gamma_{\Lambda^c}) = rac{1}{Z_{\Lambda}(\gamma_{\Lambda^c})} f_{\Lambda}(\gamma_{\Lambda}|\gamma_{\Lambda^c}) \pi^z_{\Lambda}(d\gamma).$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 のへで

Multi-type Quermass models in \mathbb{R}^2

We assume that $Q([0, R_0]) = 1$.

• The local Quermass conditional density :

$$H_{\Lambda}(\gamma_{\Lambda}|\gamma_{\Lambda^c}) = H(\gamma_{\Lambda \oplus B(0,2R_0)}) - H(\gamma_{\Lambda \oplus B(0,2R_0) \setminus \Lambda}).$$

$$f_{\Lambda}(\gamma_{\Lambda}|\gamma_{\Lambda^c}) = \mathbb{I}_{\mathcal{A}_{\text{nob}}}(\gamma)e^{-H_{\Lambda}(\gamma_{\Lambda}|\gamma_{\Lambda^c})}.$$

• Multi-type Quermass model in \mathbb{R}^2 : Any probability measure P satisfying, for each bounded Λ , the DLR equation

$$P(d\gamma_{\Lambda}|\gamma_{\Lambda^c}) = rac{1}{Z_{\Lambda}(\gamma_{\Lambda^c})} f_{\Lambda}(\gamma_{\Lambda}|\gamma_{\Lambda^c}) \pi^z_{\Lambda}(d\gamma).$$

• Questions : Existence, uniqueness, non uniqueness (phase transition), percolation?

Percolation.

ション ふゆ マ キャット マックタン

First results.

- Widom-Rowlinson (70) : $K = 1, \theta_1 \ge 0, \theta_2 = 0, \theta_3 = 0$. Existence and phase Transition for z large enough.
- Chayes-Kotecky (95) : $K \ge 1$, $\theta_1 \ge 0$, $\theta_2 = 0$, $\theta_3 = 0$ Percolation and phase transition for z large enough.
- Giacomin-Lebovitz-Maes (95) : Idem
- Der. (09) : Existence for any parameters.

Percolation.

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ ○ ◆

First results.

- Widom-Rowlinson (70) : $K = 1, \theta_1 \ge 0, \theta_2 = 0, \theta_3 = 0$. Existence and phase Transition for z large enough.
- Chayes-Kotecky (95) : $K \ge 1$, $\theta_1 \ge 0$, $\theta_2 = 0$, $\theta_3 = 0$ Percolation and phase transition for z large enough.
- Giacomin-Lebovitz-Maes (95) : Idem
- Der. (09) : Existence for any parameters.

Percolation for one-type Quermass Model with z large enough

₩

Phase transition for multi-type Quermass model (K > 1)with z large enough.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Percolation.

Main Result

In this Section K = 1

" $\bar{\gamma}$ percolates" means "there exists an unbounded connected component in $\bar{\gamma}$ ".

Percolation.

うして ふゆう ふほう ふほう ふしつ

Main Result

In this Section K = 1" $\bar{\gamma}$ percolates" means "there exists an unbounded connected component in $\bar{\gamma}$ ".

Theorem (Coupier, Der.)

We assume that $Q([R_0, R_1]) = 1$ with $(R_0 > 0 \text{ and } R_1 < \infty)$, then for any coefficients $\theta_1, \theta_2, \theta_3$ in \mathbb{R} , there exists $z^* > 0$ such that for any $z > z^*$ and any Quermass process P for parameters $z, \theta_1, \theta_2, \theta_3$,

 $P(\bar{\gamma} \ percolates) = 1,$

うして ふゆう ふほう ふほう ふしつ

Main Result

In this Section K = 1" $\bar{\gamma}$ percolates" means "there exists an unbounded connected component in $\bar{\gamma}$ ".

Theorem (Coupier, Der.)

We assume that $Q([R_0, R_1]) = 1$ with $(R_0 > 0 \text{ and } R_1 < \infty)$, then for any coefficients $\theta_1, \theta_2, \theta_3$ in \mathbb{R} , there exists $z^* > 0$ such that for any $z > z^*$ and any Quermass process P for parameters $z, \theta_1, \theta_2, \theta_3$,

 $P(\bar{\gamma} \ percolates) = 1,$

Main issue : when $\theta_3 \neq 0$, it is impossible to obtain a stochastic minoration of P by Poisson processes

For all
$$z' > 0$$
, $\pi_{\Lambda}^{z'} \not\preceq P_{\Lambda}$.

Percolation.

Phase transition

The connection Lemma

 $\mathcal{D} = \text{the diamond box}$ $\mathcal{D} \text{ is open for } \bar{\gamma} \text{ if}$ a) $\bar{\gamma} \cap B_N \neq \emptyset$ b) the same for B_E, B_W, B_S c) B_N, B_E, B_W, B_S are connected via $\bar{\gamma}_{\mathcal{D}}$

Lemma (Connection Lemma)

There exists C > 0 (depending on θ_1 , θ_2 and θ_3) such that for any z > 0 and any Quermass process P

$$\inf_{\gamma_{\Lambda^c}} P(\mathcal{D} \text{ is open } | \gamma_{\Lambda^c}) \ge 1 - \frac{C}{z}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Classical Bernoulli domination

Let (V, E) be an undirected graph with uniformly bounded degrees and ξ a random variable in $\{0, 1\}^V$

Lemme (Liggett et al. 97)

Let $p \in [0, 1]$. Assume that for all $x \in V$,

 $P(\xi_x = 1 | \xi_y : \{x, y\} \notin E) \ge p \ a.s.$

Then the law of $\{\xi_x, x \in V\}$ dominates stochastically a product $\otimes_{x \in \mathcal{V}} B_x$ of Bernoulli laws with parameter f(p), with $\lim_{p \to 1} f(p) = 1$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

うして ふゆう ふほう ふほう ふしつ

Results

Theorem (Coupier, Der.)

We assume that $Q([R_0, R_1]) = 1$ with $(R_0 > 0 \text{ and } R_1 < \infty)$, then for any coefficients $\theta_1, \theta_2, \theta_3$ in \mathbb{R} and K > 1, there exists $z^* > 0$ such that for any $z > z^*$, there exist several multi-type Quermass processes for parameters $z, \theta_1, \theta_2, \theta_3$ and K.

In particular, there exist several multi-type Boolean models for K fixed and z large enough.

Percolation.

Approximation by finite volume multi-type Quermass processes

Proposition

The set of multi-type Quermass processes is a Choquet's Simplex such that each extremal process P is ergodic with the following approximation

$$P = \lim_{\Lambda \to \mathbb{R}^2} P(.|\gamma_{\Lambda^c}),$$

for P almost every γ . Conversely, for every γ such that the multi-type Quermass process on Λ given the outside configuration γ_{Λ^c} converges to a probability measure P. Then P is a multi-type Quermass process on \mathbb{R}^2 .

Stochastic domination for $2^{N_{cc}}P_{\Lambda}$

Proposition

Let γ be a configuration. Let $(P_{\Lambda}^{z}(.|\gamma_{\Lambda^{c}}))_{z>0}$ be the one-type Quermass processes on Λ for parameters z and $\theta_{1}, \theta_{2}, \theta_{3}$. Then

$$P_{\Lambda}^{Cz}(.|\gamma_{\Lambda^c}) \preceq \frac{1}{Z_{\Lambda}} 2^{N_{cc}} P_{\Lambda}^z(.|\gamma_{\Lambda^c}),$$

with

$$C = 2^{-\frac{\pi}{arcsin(\frac{R_0}{R_0 + R_1})}} > 0$$

In particular, thanks to the approximation and the representation of the multi-type Quermass processes, we show that the multi-type Quermass process percolates for z large enough.

Percolation.

Phase transition

◆□▶ ◆□▶ ★□▶ ★□▶ ● ● ●

The phase transition proof

Let $\frac{1}{Z_{\Lambda}} 2^{N_{cc}} P_{\Lambda}^{z}(.|\gamma_{\Lambda^{c}})$ be a modified one-type Quermass process with a full boundary condition

Percolation.

Phase transition

ション ふゆ マ キャット しょう くりく

The phase transition proof

Let $\frac{1}{Z_{\Lambda}} 2^{N_{cc}} P_{\Lambda}^{z}(.|\gamma_{\Lambda^{c}})$ be a modified one-type Quermass process with a full boundary condition

2-type Quermass Process in Λ with red boundary condition

Percolation.

Phase transition

The phase transition proof

Let $\frac{1}{Z_{\Lambda}} 2^{N_{cc}} P_{\Lambda}^{z}(.|\gamma_{\Lambda^{c}})$ be a modified one-type Quermass process with a full boundary condition

2-type Quermass Process in Λ with red boundary condition

2-type Quermass Process in Λ with blue boundary condition

Percolation.

Phase transition

うして ふゆう ふほう ふほう ふしつ

The phase transition proof

 When Λ goes to R², the 2-type Quermass process in Λ with red boundary condition goes to a 2-type Quermass process in R² with the red particle density bigger than the blue particle density (if percolation occurs).

Percolation.

Phase transition

うして ふゆう ふほう ふほう ふしつ

The phase transition proof

- When Λ goes to R², the 2-type Quermass process in Λ with red boundary condition goes to a 2-type Quermass process in R² with the red particle density bigger than the blue particle density (if percolation occurs).
- Conversely for the 2-type Quermass process in Λ with blue boundary condition.

うして ふゆう ふほう ふほう ふしつ

The phase transition proof

- When Λ goes to R², the 2-type Quermass process in Λ with red boundary condition goes to a 2-type Quermass process in R² with the red particle density bigger than the blue particle density (if percolation occurs).
- Conversely for the 2-type Quermass process in Λ with blue boundary condition.
- We build two different 2-type Quermass processes in \mathbb{R}^2 .