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Clustering of points

Clustering in a point pattern roughly means that the points
lie in clusters (groups) with the clusters being spaced out.
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Clustering of points

Clustering in a point pattern roughly means that the points
lie in clusters (groups) with the clusters being spaced out.

How to compare clustering properties of two point
processes (pp) Φ1, Φ2 having “on average” the same
number of points per unit of space?

More precisely, having the same mean measure:
E(Φ1(B)) = E(Φ2(B)) for all B ⊂ E.
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Motivation

Develop models and tools for the study of impact of
clustering of nodes on the performance of geometric
networks.
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Motivation

Develop models and tools for the study of impact of
clustering of nodes on the performance of geometric
networks.

Particular application domain — wireless networks.

We are interested in

coverage, (SINR coverage, throughput),

percolation (connectivity),

first passage percolation (routing),

...
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Clustering comparison tools

Statistical tools. Ripley function, correlation function, ...
(local hence relatively weak tools).
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Clustering comparison tools

Statistical tools. Ripley function, correlation function, ...
(local hence relatively weak tools).

Positive and negative association of pp. Way of
comparing dependence of points to the complete
independence property of Poisson pp.

⇒ Comparisons of void probabilities and all higher-order
factorial moment measures. Statistically larger voids and
moments — more clustering.

⇒ dcx ordering of pp. Natural extension of dcx ordering of
random vectors (recall Ross’s conjecture), a
generalization of convex ordering of random variables.
Larger in dcx pp represent more variability (in probability
and in state space — clustering).
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dcx (directionally convex) functions

Function f : R
d → R twice differentiable is dcx if ∂2f(x)

∂xi∂xj
≥ 0

for all x ∈ R
d and ∀i, j.
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∂xi∂xj
≥ 0

for all x ∈ R
d and ∀i, j.

Definition can be extended to all functions by saying that f is
dcx if all difference operators ∆δ

i f(x) := f(x + δei) − f(x)

are non-negative; ∆ǫ
i∆

δ
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dcx (directionally convex) functions

Function f : R
d → R twice differentiable is dcx if ∂2f(x)

∂xi∂xj
≥ 0

for all x ∈ R
d and ∀i, j.

Definition can be extended to all functions by saying that f is
dcx if all difference operators ∆δ

i f(x) := f(x + δei) − f(x)

are non-negative; ∆ǫ
i∆

δ
jf(x) ≥ 0, ∀x ∈ R

d, i, j ∈ {1, . . . , d},
δ > 0, ǫ > 0.

No evident geometrical interpretation!

f is dcx iff f is component-wise convex and supermodular.

Examples:

f(x) = e− P

i aixi , ai ≥ 0.

f(x) =
∏

i max(xi, ai), ai constants,
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dcx ordering of point processes

Define: Φ1 ≤dcx Φ2 if for all bounded Borel subsets
B1, . . . , Bn,

(

Φ1(B1), . . . , Φ1(Bn)
)

≤dcx

(

Φ2(B1), . . . , Φ2(Bn)
)

;
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Define: Φ1 ≤dcx Φ2 if for all bounded Borel subsets
B1, . . . , Bn,

(

Φ1(B1), . . . , Φ1(Bn)
)

≤dcx

(

Φ2(B1), . . . , Φ2(Bn)
)

;

i.e, ∀f dcx, bounded Borel subsets B1, . . . , Bn,

E

(
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(
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dcx ordering of point processes

Define: Φ1 ≤dcx Φ2 if for all bounded Borel subsets
B1, . . . , Bn,

(

Φ1(B1), . . . , Φ1(Bn)
)

≤dcx

(

Φ2(B1), . . . , Φ2(Bn)
)

;

i.e, ∀f dcx, bounded Borel subsets B1, . . . , Bn,

E

(

f
(

Φ1(B1), . . . , Φ1(Bn)
))

≤ E

(

f
(

Φ2(B1), . . . , Φ2(Bn)
))
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Sufficient condition: Enough to verify the inequality on
disjoint bounded Borel subsets (bBs).
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dcx ordering of point processes

Define: Φ1 ≤dcx Φ2 if for all bounded Borel subsets
B1, . . . , Bn,

(

Φ1(B1), . . . , Φ1(Bn)
)

≤dcx

(

Φ2(B1), . . . , Φ2(Bn)
)

;

i.e, ∀f dcx, bounded Borel subsets B1, . . . , Bn,

E

(

f
(

Φ1(B1), . . . , Φ1(Bn)
))

≤ E

(

f
(

Φ2(B1), . . . , Φ2(Bn)
))

.

Sufficient condition: Enough to verify the inequality on
disjoint bounded Borel subsets (bBs).

dcx is a partial order (reflective, antisymmetric and
transitive) of point process with locally finite mean measure
(to ensure transitivity).
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dcx for point processes; properties

If Φ1 ≤dcx Φ2 then Φ1 and Φ2 have equal mean
measures; E(Φ1(·)) = E(Φ2(·)).

– p. 8



dcx for point processes; properties

If Φ1 ≤dcx Φ2 then Φ1 and Φ2 have equal mean
measures; E(Φ1(·)) = E(Φ2(·)).
dcx is preserved by independent thinning, marking and
superpositioning; i.e.,

If Φ1 ≤dcx Φ2 then Φ̃1 ≤dcx Φ̃2 ,

where Φ̃i is a version of Φi independently thinned (or
marked, or superposed with a given point process).
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dcx and shot-noise fields

Given point process Φ and a non-negative function h(x, y)

on (Rd, S), measurable in x, where S is some set, define
shot noise field: for y ∈ S

VΦ(y) :=
∑

X∈Φ

h(X, y) =

∫

Rd

h(x, y)Φ(dx) .
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dcx and shot-noise fields

Given point process Φ and a non-negative function h(x, y)

on (Rd, S), measurable in x, where S is some set, define
shot noise field: for y ∈ S

VΦ(y) :=
∑

X∈Φ

h(X, y) =

∫

Rd

h(x, y)Φ(dx) .

Proposition. [BB-Yogesh’09] If Φ1 ≤dcx Φ2 then
(

VΦ1
(y1), . . . , VΦ1

(yn)
)

≤dcx

(

VΦ2
(y1), . . . , VΦ2

(yn)
)

for any finite subset {y1, . . . , yn} ⊂ S, provided the RHS
has finite mean. In other words, dcx is preserved by the
shot-noise field construction.
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dcx and shot-noise fields; cont’d

Proof.

Approximate the integral by simple functions as usual in
integration theory: a.s. and in L1
∑kn

i=1 ainΦ(B
j
in) → ∫

Rd h(x, y)Φ(dx) = VΦ(yj), ain ≥ 0.
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dcx and shot-noise fields; cont’d

Proof.

Approximate the integral by simple functions as usual in
integration theory: a.s. and in L1
∑kn

i=1 ainΦ(B
j
in) → ∫

Rd h(x, y)Φ(dx) = VΦ(yj), ain ≥ 0.

Increasing linear operations preserve dcx hence
approximating simple functions are dcx ordered.

dcx order is preserved by joint weak and L1

convergence. Hence limiting shot-noise fields are dcx

ordered.
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dcx and extremal shot-noise fields

In the setting as before define for y ∈ S

UΦ(y) := sup
X∈Φ

h(X, y) .
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dcx and extremal shot-noise fields

In the setting as before define for y ∈ S

UΦ(y) := sup
X∈Φ

h(X, y) .

Proposition. [BB-Yogesh’09] If Φ1 ≤dcx Φ2 then for all
y1, . . . , yn ∈ S; a1, . . . , an ∈ R,
P
(

UΦ1
(yi) ≤ ai, 1 ≤ i ≤ m

)

≤ P
(

UΦ2
(yi) ≤ ai, 1 ≤ i ≤ m

)

;

i.e, the (joint) finite-dimensional distribution functions of the
extremal shot-noise fields are ordered (lower orthant order).
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dcx and extremal shot-noise fields

In the setting as before define for y ∈ S

UΦ(y) := sup
X∈Φ

h(X, y) .

Proposition. [BB-Yogesh’09] If Φ1 ≤dcx Φ2 then for all
y1, . . . , yn ∈ S; a1, . . . , an ∈ R,
P
(

UΦ1
(yi) ≤ ai, 1 ≤ i ≤ m

)

≤ P
(

UΦ2
(yi) ≤ ai, 1 ≤ i ≤ m

)

;

i.e, the (joint) finite-dimensional distribution functions of the
extremal shot-noise fields are ordered (lower orthant order).

Corollary. One-dimensional distributions of the extremal
shot-noise fields are strongly ordered with reversed
inequality UΦ2

(y) ≤st UΦ1
(y), ∀y ∈ S.
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dcx and extremal shot-noise fields; cont’d

Proof.

Reduction to an (additive) shot noise:

P (UΦ(yi) ≤ ai, 1 ≤ i ≤ n)

= E

(

e− Pn
i=1

P

X∈Φ
− log 1[h(X,yi)≤ai]

)

.
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dcx and extremal shot-noise fields; cont’d

Proof.

Reduction to an (additive) shot noise:

P (UΦ(yi) ≤ ai, 1 ≤ i ≤ n)

= E

(

e− Pn
i=1

P

X∈Φ
− log 1[h(X,yi)≤ai]

)

.

e− P

xi is dcx function.
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Outline of the remaining part of the talk

⇒ Clustering — models,

Clustering and coverage,

⇒ Clustering and percolation,

Clustering and first passage percolation.
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Clustering — models
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Poisson point process

Given deterministic, locally finite measure Λ(·) on E = R
d.

Definition. Φ = ΦΛ is Poisson point process on E of intensity
Λ(·) (Poi(Λ)) if for any B1, . . . , Bn, bounded, pairwise
disjoint subset of E

Φ(B1), . . . , Φ(Bn) are independent random variables
and

Φ(Bi) has Poisson distribution with parameter Λ(Bi).
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Poisson point process

Given deterministic, locally finite measure Λ(·) on E = R
d.

Definition. Φ = ΦΛ is Poisson point process on E of intensity
Λ(·) (Poi(Λ)) if for any B1, . . . , Bn, bounded, pairwise
disjoint subset of E

Φ(B1), . . . , Φ(Bn) are independent random variables
and

Φ(Bi) has Poisson distribution with parameter Λ(Bi).

Homogeneous case: Λ(dx) = λdx for some 0 < λ < ∞.

Λ is the mean measure of ΦΛ.

– p. 15



Poisson point process, cont’d

Void probabilities:

νΦ(B) = P (Φ(B) = 0) = e−Λ(B) .
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Poisson point process, cont’d

Void probabilities:

νΦ(B) = P (Φ(B) = 0) = e−Λ(B) .

Moment measure of order k:

α(k)(B1 × . . . × Bk) = E

(

k
∏

i=1

Φ(Bi)

)

=
k
∏

i=1

Λ(Bi)

for mutually disjoint B1, . . . , Bk
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Poisson point process, cont’d

Void probabilities:

νΦ(B) = P (Φ(B) = 0) = e−Λ(B) .

Moment measure of order k:

α(k)(B1 × . . . × Bk) = E

(

k
∏

i=1

Φ(Bi)

)

=
k
∏

i=1

Λ(Bi)

for mutually disjoint B1, . . . , Bk

In Homogeneous case: Riplay’s function K(r) ≡ πr2

and pair correlation function g(x) ≡ 1.
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Cox point process

or doubly stochastic Poisson point process.
Suspected to cluster more than Poisson.
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d.

Definition. ΦL is Cox point process on E of intensity L(·)
(Cox(L)) if conditionally, given L(·) = Λ(·), ΦL is Poisson
point process with intensity measure Λ.

P (ΦL(B) = 0) = E(P (ΦΛ(B) = 0|L = Λ)) =

E

(

e−Λ(B)|L = Λ
)

≤ e−E(L(B)) (Jensen’s inequality).

Hence, void probabilities of Cox(L) are larger than
these of Poi(E(L)).
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Cox point process

or doubly stochastic Poisson point process.
Suspected to cluster more than Poisson.

Given random, locally finite measure L(·) on E = R
d.

Definition. ΦL is Cox point process on E of intensity L(·)
(Cox(L)) if conditionally, given L(·) = Λ(·), ΦL is Poisson
point process with intensity measure Λ.

P (ΦL(B) = 0) = E(P (ΦΛ(B) = 0|L = Λ)) =

E

(

e−Λ(B)|L = Λ
)

≤ e−E(L(B)) (Jensen’s inequality).

Hence, void probabilities of Cox(L) are larger than
these of Poi(E(L)).

More assumptions on L needed to get inequality for
moment measures and dcx order.
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Super-Poisson pp (cluster more)

strongly (dcx-larger) than Poisson

Poisson-Poisson cluster pp; L(dx) =
∑

Y ∈Ψ Λ(dx + Y ),
where Ψ is a Poisson (“parent”) process; (we will show
an example)
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Super-Poisson pp (cluster more)

strongly (dcx-larger) than Poisson

Poisson-Poisson cluster pp; L(dx) =
∑

Y ∈Ψ Λ(dx + Y ),
where Ψ is a Poisson (“parent”) process; (we will show
an example)

Lévy based Cox pp; L(B1), . . . , L(Bn) are independent
variables for pair-wise disjoint B′

is (complete
independence property) [Hellmund, Prokěová, Vedel
Jensen’08];

some perturbed Poisson pp (to be explained)

some perturbed lattice pp (to be explained)
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Super-Poisson pp (cluster more); cont’d

weakly (voids and moments larger than for Poisson of the
same mean)

(Positively) associated pp:
Cov (f(Φ(B1), . . . , Φ(Bk))g(Φ(B1), . . . , Φ(Bk))) ≥ 0

for all B1, . . . , Bk, 0f, g ≥ 0 increasing functions;
[BB-Yogesh’11]

Cox pp with associated intensity measures; [Waymire’85]

Permanental processes; density of the k th factorial
moment measure is given by
ρ(k)(x1, . . . , xk) = per(K(xi, xj))1≤i,j≤k , where per
stands for permanent of a matrix and K is some kernel
(assumptions needed). It is also a Cox process!;
[Ben Hough’09, BB-Yogesh’11]
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Candidates to cluster less than Poisson?
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Candidates to cluster less than Poisson?

regular grid processes
(like square, or hexagonal grid on R

2) ?
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Candidates to cluster less than Poisson?

regular grid processes
(like square, or hexagonal grid on R

2) ?

processes with some “repulsion mechanism” between
points (like some Gibb’s point processes)?

Well..., not immediately. Some (much) extra
assumptions and modification are needed.
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Sub-Poisson pp (cluster less)

strongly (in dcx)

some perturbed lattice pp (to be explained)

– p. 21



Sub-Poisson pp (cluster less)

strongly (in dcx)

some perturbed lattice pp (to be explained)

weakly (voids and moments)

Negatively associated point processes;
Cov (f(Φ(B1), . . . , Φ(Bk)), g(Φ(Bk+1), . . . , Φ(Bl))) ≤ 0

for all of bBs B1, . . . , Bl s.t.
(B1 ∪ . . . ∪ Bk) ∩ (Bk+1 ∪ . . . ∪ Bl) = ∅ and 0f, g ≥ 0

increasing functions; [BB-Yogesh’11]
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Sub-Poisson pp (cluster less)

strongly (in dcx)

some perturbed lattice pp (to be explained)

weakly (voids and moments)

Negatively associated point processes;
Cov (f(Φ(B1), . . . , Φ(Bk)), g(Φ(Bk+1), . . . , Φ(Bl))) ≤ 0

for all of bBs B1, . . . , Bl s.t.
(B1 ∪ . . . ∪ Bk) ∩ (Bk+1 ∪ . . . ∪ Bl) = ∅ and 0f, g ≥ 0

increasing functions; [BB-Yogesh’11]

Determinantal point processes density of the k th
factorial moment measure is given by
ρ(k)(x1, . . . , xk) = det(K(xi, xj))1≤i,j≤k , where det
stands for determinant of a matrix and K is some kernel
(assumptions needed). It is a Gibbs process!;
[Ben Hough’09, BB-Yogesh’11] – p. 21



More for determinantal and permanental

dcx comparison to Poisson pp is possible on mutually
disjoint, simultaneously observable sets.
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More for determinantal and permanental

dcx comparison to Poisson pp is possible on mutually
disjoint, simultaneously observable sets.

It follows for example that, the pp of radii of the Ginibre(∗) pp
is (dcx) sub-Poisson.

(∗) The determinantal pp with kernel
K((x1, x2), (y1, y2)) = exp[(x1y1 + x2y2) + i(x2y1 − x1y2)],
xj, yj ∈ R, j = 1, 2, with respect to the measure
µ(d(x1, x2)) = π−1 exp[−x2

1 − x2
2] dx1dx2.

– p. 22



Perturbation of a point processes

Φ a pp on R
d, N (·, ·), X (·, ·) be two probability kernels from

R
d to non-negative integers Z

+ and R
d, respectively. Define

a new pp on R
d

Φpert :=
⋃

X∈Φ

NX
⋃

i=1

{X + YiX} ,

where
NX , X ∈ Φ are independent, non-negative
integer-valued random variables with distribution
P (NX ∈ · | Φ) = N (X, ·),
YX = (YiX : i = 1, 2, . . .), X ∈ Φ are independent
vectors of i.i.d. elements of R

d, with YiX ’s having the
conditional distribution P (YiX ∈ · | Φ) = X (X, ·),
the random elements NX , YX are independent given Φ,
for all X ∈ Φ.

– p. 23



Perturbation of a point processes; cont’d

Φpert can be seen as independently replicating and
translating points from the pp Φ, with replication kernel N
and the translation kernel X .

X in Φ

iXY

NX
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Perturbation of a point processes; cont’d

Perturbation of Φ is dcx monotone with respect to the
replication kernel.

Proposition. [BB-Yogesh’11] Consider a pp Φ with locally
finite mean measure α(·) and its two perturbations Φ

pert
j

j = 1, 2 with the same translation kernel X and replication
kernels Nj , j = 1, 2, respectively. If N (x, ·) ≤cx N (x, ·)
(convex ordering of the number of replicas; test functions F
are all convex functions on R) for α-almost all x ∈ R

d, then
Φ

pert
1 ≤dcx Φ

pert
2 .
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Perturbation of a point processes; cont’d

Perturbation of Φ is dcx monotone with respect to the
replication kernel.

Proposition. [BB-Yogesh’11] Consider a pp Φ with locally
finite mean measure α(·) and its two perturbations Φ

pert
j

j = 1, 2 with the same translation kernel X and replication
kernels Nj , j = 1, 2, respectively. If N (x, ·) ≤cx N (x, ·)
(convex ordering of the number of replicas; test functions F
are all convex functions on R) for α-almost all x ∈ R

d, then
Φ

pert
1 ≤dcx Φ

pert
2 .

Proof. Using dcx comparison of some shot-noise fields.
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Perturbed Poisson pp

Assume:
Φ — (possibly inhomogeneous) Poisson pp,

arbitrary translation kernel,

N1(x, ·) Dirac measure on Z
+ concentrated at 1,

N2(x, ·) arbitrary with mean number 1 of replications.
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Perturbed Poisson pp

Assume:
Φ — (possibly inhomogeneous) Poisson pp,

arbitrary translation kernel,

N1(x, ·) Dirac measure on Z
+ concentrated at 1,

N2(x, ·) arbitrary with mean number 1 of replications.
Then

Φ
pert
1 ≤dcx Φ

pert
2

ր տ
Poisson pp perturbed Poisson pp

Indeed, by Jensen’s inequality N1 ≤cx N2.
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Perturbed lattices
Assume:
Φ — deterministic lattice,

(say uniform) translation kernel in-
side lattice cell,

and replication kernels:

N0(x, ·) = Poi(1),

N1(x, ·) ≤c Poi(1),

N2(x, ·) ≥c Poi(1).
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Perturbed lattices
Assume:
Φ — deterministic lattice,

(say uniform) translation kernel in-
side lattice cell,

and replication kernels:

N0(x, ·) = Poi(1),

N1(x, ·) ≤c Poi(1),

N2(x, ·) ≥c Poi(1).
Then

Φ
pert
1 ≤dcx Φ

pert
0 ≤dcx Φ

pert
2

ր ↑ տ
sub-Poisson

perturbed lattice Poisson pp super-Poisson
perturbed lattice

– p. 27



Perturbed lattices; cont’d

cx ordered families of (discrete) random variables from
smaller to larger:

deterministic (constant);
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Perturbed lattices; cont’d

cx ordered families of (discrete) random variables from
smaller to larger:

deterministic (constant);

Hyer-Geometric pHGeo(n,m,k)(i) =
(m

i

)(n−m
k−i

)

/
(n
k

)

(max(k − n + m, 0) ≤ i ≤ m).
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Perturbed lattices; cont’d

cx ordered families of (discrete) random variables from
smaller to larger:

deterministic (constant);

Hyer-Geometric pHGeo(n,m,k)(i) =
(m

i

)(n−m
k−i

)

/
(n
k

)

(max(k − n + m, 0) ≤ i ≤ m).

Binomial pBin(n,p)(i) =
(n

i

)

pi(1 − p)n−i (i = 0, . . . , n)
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Perturbed lattices; cont’d

cx ordered families of (discrete) random variables from
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deterministic (constant);

Hyer-Geometric pHGeo(n,m,k)(i) =
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k−i

)

/
(n
k

)

(max(k − n + m, 0) ≤ i ≤ m).
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i

)
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Hyer-Geometric pHGeo(n,m,k)(i) =
(m

i
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k−i

)

/
(n
k

)

(max(k − n + m, 0) ≤ i ≤ m).
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(n

i

)
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i

)

pi(1 − p)r.
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Perturbed lattices; cont’d

cx ordered families of (discrete) random variables from
smaller to larger:

deterministic (constant);

Hyer-Geometric pHGeo(n,m,k)(i) =
(m

i

)(n−m
k−i

)

/
(n
k

)

(max(k − n + m, 0) ≤ i ≤ m).

Binomial pBin(n,p)(i) =
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)
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Negative Binomial pNBin(r,p)(i) =
(r+i−1

i
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Perturbed lattices; cont’d

cx ordered families of (discrete) random variables from
smaller to larger:

deterministic (constant);

Hyer-Geometric pHGeo(n,m,k)(i) =
(m

i

)(n−m
k−i

)

/
(n
k

)

(max(k − n + m, 0) ≤ i ≤ m).

Binomial pBin(n,p)(i) =
(n

i

)

pi(1 − p)n−i (i = 0, . . . , n)

Poisson pP oi(λ)(i) = e−λλi/i! (i = 0, 1, . . .)

Negative Binomial pNBin(r,p)(i) =
(r+i−1

i

)

pi(1 − p)r.

Geometric pGeo(p)(i) = pi(1 − p)

Assuming parameters making equal means, we have
const ≤cx HGeo ≤cx Bin ≤cx Poi ≤cx NBin ≤cx Geo
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Clustering and coverage
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Capacity functional of Boolean Model

Let C(Φ, G) be Boolean model with germs Φ and with
typical grain G.

Proposition. [BB-Yogesh’11] If Φ1 ≤dcx Φ2 then
P (C(Φ1, G) ∩ B 6= ∅) ≥ P (C(Φ2, G) ∩ B 6= ∅) for all bBs B

provided G is fixed (deterministic) compact grain or Φi are
simple and have locally finite moment measures.
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Capacity functional of Boolean Model

Let C(Φ, G) be Boolean model with germs Φ and with
typical grain G.

Proposition. [BB-Yogesh’11] If Φ1 ≤dcx Φ2 then
P (C(Φ1, G) ∩ B 6= ∅) ≥ P (C(Φ2, G) ∩ B 6= ∅) for all bBs B

provided G is fixed (deterministic) compact grain or Φi are
simple and have locally finite moment measures.

Proof. Void probabilities (complement of the capacity
functional) can be expressed using the distribution function
an extrema shot-noise:

P (Φ(B) = 0) = P

(

max
X∈Φ

1(X ∈ B) ≤ 0

)

.
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Coverage in SINR models

Shot-noise field ≡ interference field.
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Coverage in SINR models

Shot-noise field ≡ interference field.

Using the fact that dcx ordering of pp implies dcx

ordering of the respective shot-noise fields we conclude
that mean characteristics of models which are convex in
interference I are increased(!) by the clustering of the
pattern of interferers.
Examples:

SINR coverage probability P{S/(w + I) ≥ const} for
signal power S with convex tail distribution function
(Rayleigh fading case).
Shannon throughput E[log(1 + S/(w + I))].
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Clustering and percolation
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Continuum percolation

Boolean model C(Φ, r):
germs in Φ,
spherical grains of given
radius r.

r

– p. 33



Continuum percolation

Boolean model C(Φ, r):
germs in Φ,
spherical grains of given
radius r.

r

Joining germs whose
grains intersect one
gets Random Geo-
metric Graph (RGG).
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Continuum percolation

Boolean model C(Φ, r):
germs in Φ,
spherical grains of given
radius r.

r

Joining germs whose
grains intersect one
gets Random Geo-
metric Graph (RGG).

percolation ≡ existence of an infinite connected subset
(component).
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Critical radius for percolation

Critical radius for the percolation in the Boolean Model with
germs in Φ

rc(Φ) = inf{r > 0 : P(C(Φ, r)percolates) > 0}
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Critical radius for percolation

Critical radius for the percolation in the Boolean Model with
germs in Φ

rc(Φ) = inf{r > 0 : P(C(Φ, r)percolates) > 0}

0

1

r
grain radius r

?

probability of percolation

c
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Phase transition in ergodic case

In the case when Φ is stationary and ergodic

0

1

c
grain radius r

r

probability of percolation
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Phase transition in ergodic case

In the case when Φ is stationary and ergodic

0

1

c
grain radius r

r

probability of percolation

If 0 < rc < ∞ we say that the phase transition is non-trivial.
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Clustering and percolation; Heuristic

Clustering worsens percolation.
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Clustering and percolation; Heuristic

Clustering worsens percolation.

Point processes exhibiting more clustering of points should
have larger critical radius rc for the percolation of their
continuum percolation models.

Φ1 “clusters less than” Φ2 ⇒ rc(Φ1) ≤ rc(Φ2).
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Clustering and percolation; Heuristic

Clustering worsens percolation.

Point processes exhibiting more clustering of points should
have larger critical radius rc for the percolation of their
continuum percolation models.

Φ1 “clusters less than” Φ2 ⇒ rc(Φ1) ≤ rc(Φ2).

Indeed, points lying in the same cluster of will be connected by edges
for some smaller r but points in different clusters need a relatively higher
r for having edges between them, and percolation cannot be achieved
without edges between some points of different clusters. Spreading
points from clusters of ”more homogeneously” in the space should result
in a decrease of the radius r for which the percolation takes place.
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Conjecture for perturbed lattices

Φ1 ≤dcx Φ2

⇓
rc(Φ1) ≤ rc(Φ2)

Bin(1,1) =

const

Bin(1,1/n)րcx

Poi(1)

NBin(n,1/(1 +

n))ցcxPoi(1)

NBin(1,1/2) =

Geo(1/2)
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Counterexample

One can construct Poisson-Poisson cluster pp of any
intensity a > 0 and rc = 0!
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Counterexample

One can construct Poisson-Poisson cluster pp of any
intensity a > 0 and rc = 0!
Poisson-Poisson cluster pp ΦR,δ,µ

α with annular clusters
Φα — Poisson (parent)
pp of intensity α on R

2,
Poisson clusters of
total intensity µ, sup-
ported on annuli of radii
R − δ, R.

We have Φλ ≤dcx ΦR,δ,µ
α , where Φλ is homogeneous

Poisson pp of intensity λ = αµ.
Proposition. [BB-Yogesh’11] Given arbitrarily small
a, r > 0, there exist constants α, µ, δ, R such that
0 < α, µ, δ, R < ∞, the intensity αµ of ΦR,δ,µ

α is equal to a

and the critical radius for percolation rc(Φ
R,δ,µ
α ) ≤ r. – p. 38



Phase transitions for sub-Poisson pp

Proposition. [BB-Yogesh’11]Let Φ be a stationary pp on
R

d, weakly sub-Poisson (void probabilities and moment
measures smaller than for the Poisson pp of some intensity
λ). Then

0 <
1

(2dλ(3d − 1))1/d
≤ rc(Φ) ≤

√
d(log(3d − 2))1/d

λ1/d
< ∞.
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Phase transitions for sub-Poisson pp

Proposition. [BB-Yogesh’11]Let Φ be a stationary pp on
R

d, weakly sub-Poisson (void probabilities and moment
measures smaller than for the Poisson pp of some intensity
λ). Then

0 <
1

(2dλ(3d − 1))1/d
≤ rc(Φ) ≤

√
d(log(3d − 2))1/d

λ1/d
< ∞.

Similar results for

k-percolation (percolation of k-covered subset) for dcx

sub-Poisson.

word percolation,

SINR-graph percolation (graph on a shot-noise
germ-grain model).
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Hint 1: An “upper” critical radius

Define a new critical radius

rc = inf
{

r > 0 : ∀n ≥ 1,
∑

γ∈Γn

P (C(Φ, r) ∩ Qγ = ∅) < ∞
}

.

By Peierls argument

rc(Φ) ≤ rc(Φ). 0

r

1/n

γ

Qγ

– p. 40



Peierls argument

A sufficient condition for percolation: the maximal
number of closed (not tuching the Boolean Model),
disjoint contours around the origin is finite.
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Peierls argument

A sufficient condition for percolation: the maximal
number of closed (not tuching the Boolean Model),
disjoint contours around the origin is finite.

Even stronger condition: expected number of such
closed contours is finite.

E(number of closed contours)

= E





∑

γ∈Γn

1(contour γ is closed)





=
∑

γ∈Γn

P (contour γ is closed)

=
∑

γ∈Γn

P (C(Φ, r) ∩ Qγ = ∅) < ∞ .
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“Upper” critical radius; cont’d

Fact. If Φ1 ≤dcx Φ2 then rc(Φ1) ≤ rc(Φ2).
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“Upper” critical radius; cont’d

Fact. If Φ1 ≤dcx Φ2 then rc(Φ1) ≤ rc(Φ2).
Ordering of void probabilities of Φi is enough for RGG.
dcx needed for Boolean models with arbitrary grain.
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Hint 2: A “lower” critical radius

Define a new critical radius

rc(Φ) := inf
{

r > 0 : lim inf
m→∞ E(Nm(Φ, r)) > 0

}

.

By Markov inequality

rc(Φ) ≤ rc(Φ).

0−m m

m

−m
r

N  =m 3
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“Lower” critical radius; cont’d

Fact. If Φ1 ≤dcx Φ2 then rc(Φ1) ≥ rc(Φ2).
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“Lower” critical radius; cont’d

Fact. If Φ1 ≤dcx Φ2 then rc(Φ1) ≥ rc(Φ2).

Inequality reversed! In clustering pp, whenever there is at
least one path of some given length, there might be actually
so many such paths, that the inequality for the expected
numbers of paths are reversed.
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“Lower” critical radius; cont’d

Fact. If Φ1 ≤dcx Φ2 then rc(Φ1) ≥ rc(Φ2).

Inequality reversed! In clustering pp, whenever there is at
least one path of some given length, there might be actually
so many such paths, that the inequality for the expected
numbers of paths are reversed.

Ordering of moment measures of Φi is enough for RGG.
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Sandwich inequality for the critical radii

Corollary. If Φ1 ≤dcx Φ2 then

rc(Φ2) ≤ rc(Φ1) ≤ rc(Φ1) ≤ rc(Φ1) ≤ rc(Φ2).
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Sandwich inequality for the critical radii

Corollary. If Φ1 ≤dcx Φ2 then

rc(Φ2) ≤ rc(Φ1) ≤ rc(Φ1) ≤ rc(Φ1) ≤ rc(Φ2).

Double phase transition for Φ2

0 < rc(Φ2) ≤ rc(Φ2) < ∞
⇓

usual phase transition for all Φ1 ≤dcx Φ2

0 < rc(Φ1) < ∞.
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Sandwich inequality for the critical radii

Corollary. If Φ1 ≤dcx Φ2 then

rc(Φ2) ≤ rc(Φ1) ≤ rc(Φ1) ≤ rc(Φ1) ≤ rc(Φ2).

Double phase transition for Φ2

0 < rc(Φ2) ≤ rc(Φ2) < ∞
⇓

usual phase transition for all Φ1 ≤dcx Φ2

0 < rc(Φ1) < ∞.

The double phase transition holds for Poisson pp and thus
ensures the usual phase transition of all sub-Poisson pp.
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Clustering and first passage percolation
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Routing on random space-time SINR graph

Result. [Baccelli-BB-Misradeghi (2011)] Existence of
stochastically too large voids in Poisson pp is the reason of
infinite end-to-end packet-delivery delays in a time-space
SINR model, studied in the framework of a first passage
percolation problem.
The same problem studied on some less clustering pp (that
can be shown dcx sub Poisson) gives finite delays.
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thank you
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