
INSTITUTE OF STOCHASTICS, KIT

ON THE ZERO CELL OF A PARAMETRIC CLASS OF
POISSON HYPERPLANE TESSELLATIONS

Daniel Hug | March 29, 2012

KIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

www.kit.edu

0

http://www.kit.edu


Plan

1 From Poisson Voronoi tessellations to a parametric class of Poisson
hyperplane tessellations

2 Formulas and numerical calculations for expectation and variance
of the volume of the zero cell

3 Asymptotic behaviour as the dimension goes to infinity for different
choices of parameters

4 Application to the slicing problem

2 / 27



Stationary PV tessellations

A stationary Poisson point process Y in Rn generates a stationary
Poisson Voronoi tessellation.

The tessellation is completely determined by the intensity
λ = E[card(Y ∩ [0, 1]n)].

For the typical cell Ct of a Poisson Voronoi tessellation we have:
Ct = C0(Y ∪ {0})
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From a forthcoming lecture note on stochastic geometry edited by E. Spodarev
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Shape of large Ct : Kendall’s problem

H, Reitzner & Schneider (2004)
Let Ct be the typical cell of a PVT derived from a stationary PPP Y with
intensity λ in Rn. There is a constant c0 = c0(n) such that:

If ε ∈ (0, 1) and a ≥ 1, then

P{ϑ(Ct) ≤ ε | Vn(Ct) ≥ a} ≥ 1− c exp
{
−c0ε

(n+3)/2an/kλ
}

where c = c(n, ε).

Related contributions:

Kovalenko

Calka, Calka & Schreiber

H & Schneider
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Random mosaics in high dimensions

So far random tessellations and associated random polytopes have
been considered mainly in arbitrary but fixed dimensions.

Instead of the dimension, the asymptotics of other parameters were
studied (e.g., a bound a for the volume is introduced and a→∞).

Quite recently, an interesting asymptotic result (as n→∞) has been
investigated for typical cells of Poisson Voronoi tessellations.
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Volume and shape of the typical cell

The map u 7→ Vn(Ct ∩ Bn
u) contains information about the shape of Ct

Bn
u : full-dimensional ball with center o and n-dimensional volume u

Vn: n-dimensional volume
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Alishahi & Sharifitabar ’08

E[Vn(Ct)] =
1
λ

, for all dimensions n

Var[Vn(Ct)]→ 0 , for n→∞ (exponentially fast)

E[Vn(Ct ∩ Bn
u)] =

1
λ

(1− e−λu) , for u ∈ (0,∞) and all dimensions n

Var(Vn(Ct ∩ Bn
u))→ 0 , for n→∞ (exponentially fast)

Hence, Vn(Ct) and Vn(Ct ∩ Bn
u) converge in squared mean for n→∞

Newman & Rinott ’85
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A consequence:

∆s(Ct ,Bn
u) := Vn(Ct \ Bn

u) + Vn(Bn
u \ Ct)

E∆s(Ct ,Bn
u) ≥ ln(2)/λ

and
∆s(Ct ,Bn

u)− E∆s(Ct ,Bn
u)→ 0 in L2 as n→∞.
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Hyperplane tessellations

0

A Poisson hyperplane process X generates a Poisson hyperplane
tessellation (no stationarity is assumed!).

X is completely determined by its intensity measure
Θ : B(A(n, n − 1))→ [0,∞], A 7→ E[card(X ∩ A)].

The zero cell Z0 is the cell containing the origin.
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Connection between Ct and Z0

Ct = Z0, where Z0 is the zero cell of a special hp X .

X is the process of mid-hyperplanes of o and the
points of Y .

X is the unique Poisson hyperplane process with
intensity measure

Θ(A) =
2γVoronoi

nκn

∫
Sn−1

∞∫
0

1A(H(u, t))tn−1dtHn−1(du),

for A ∈ B(A(n, n − 1)),

where γVoronoi := nκn2n−1λ depending on the
dimension n.
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A parametric class

Kendall’s problem: H & Schneider ’07
Let X be a Poisson hp with an intensity measure Θ of the form

Θ(A) =
2γ
nκn

∫
Sn−1

∞∫
0

1A(H(u, t))t r−1dtHn−1(du),

A ∈ B(A(n, n − 1)), with intensity γ > 0, distance exponent r ∈ (0,∞).

Such a hp is said to be of type DI (Distance exponent Intensity).

X is always isotropic, but stationary only for r = 1.

For r = 1 the hp X is the unique stationary, isotropic hp with
intensity γ.

Voronoi-case: γVoronoi = nκn2n−1λ, r = n.
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Motivation

The hpes of type DI are completely determined by r , γ > 0.

Idea: Explore the type of questions considered by Alishahi and
Sharifitabar for the zero cell Z0 generated by the hpes of type DI.

How does the choice of r and γ influence the (asymptotic) properties
of Z0?

Z0 provides an interesting model of a random polytope in high
dimensions.
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Volume of the zero cell

Proposition (Hörrmann & H)
For k ∈ N, we have

Γ
(n

r
+ 1
)k
κk

n

(
nκnr

2γc(n, r)

) kn
r

≤ E[Vn(Z0)k ]

≤ Γ

(
kn
r

+ 1
)
κk

n

(
nκnr

2γc(n, r)

) kn
r

.

In particular, for k = 1 we get

E[Vn(Z0)] = Γ
(n

r
+ 1
)
κn

(
nκnr

2γc(n, r)

) n
r

.
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Behaviour as r →∞

For constant intensity γ > 0, we have

lim
r→∞

E[Vn(Z0)k ] = κk
n for k ∈ N.

For γ = nκnr
2c(n,r)

(
Γ( n

r + 1)κn
) r

n , we have

E[Vn(Z0)] = 1

and
lim

r→∞
E[Vn(Z0)k ] = 1 for k ∈ N.
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Theorem (Hörrmann & H)

Var[Vn(Z0)] =
8πbn,2

r
Γ

(
2n
r

)(
nκnr

2γc(n, r)

) 2n
r

×
π∫

0

1∫
0

(
1

Fr (t, ϕ)
2n
r

− 1

(t r + 1)
2n
r

)
tn−1(sinϕ)n−2 dt dϕ,

where

Fr (t, ϕ) :=
Γ( r

2 + 1)
√
πΓ( r+1

2 )

t r

α(ϕ,t)∫
−π

2

(cos θ)r dθ +

π
2∫

α(ϕ,t)−ϕ

(cos θ)r dθ


for (t, ϕ) ∈ [0, 1]× (0, π).
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Numerical calculations for large r
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Numerical calculations for large n
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Theorem (Hörrmann & H)

D(n, r)E(n, r) ≤ Var [Vn(Z0)] ≤ D(n, r)E(n, r)4
2n
r +1,

where

D(n, r) :=
nκ2

n

r
Γ

(
2n
r

+ 1
) (

nκnr
4γc(n, r)

) 2n
r

and

E(n, r) :=
nΓ( n

2 )
√
πΓ( n−1

2 )

π∫
0

(sinϕ)n−2

1∫
0

[
tn+r−1M(α(ϕ, t), r)

+ tn−1M(ϕ− α(ϕ, t), r)
]

dt dϕ

with

M(v , r) :=
Γ( r

2 + 1)
√
πΓ( r+1

2 )

π
2∫

v

(cos θ)r dθ, v ∈ [−π
2
,
π

2
].
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Behaviour as r →∞

For constant intensity γ > 0 we have

lim
r→∞

E[Vn(Z0)k ] = κk
n for k ∈ N,

Var[Vn(Z0)] = O
(

1
r

)
.

For γ = nκnr
2c(n,r)

(
Γ( n

r + 1)κn
) r

n , we have

E[Vn(Z0)] = 1,

lim
r→∞

E[Vn(Z0)k ] = 1 for k ∈ N,

Var[Vn(Z0)] = O
(

1
r

)
.
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Behaviour of Vn(Z0) as n→∞

The previous proposition and theorem imply

constant r ,
constant γ

constant r ,
γ(r , n)

r = an, a > 0,
constant γ

r = an, a > 0,
γ(a, n)
DI*

E→∞
Var→∞

E = 1
Var→∞

E→ 0
Var→ 0

E = 1
Var→ 0
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Further studied properties

0 0 0

Volume of section of Z0 with a

full-dim. ball: Vn(Z0 ∩ Bn
u), for u ∈ (0,∞)

low-dim. ball: Vm(Z0 ∩ Bm
u ), for u ∈ (0,∞),m ≤ n

(hyper-)plane containing 0: Vm(Z0 ∩ L), for L ∈ G(n,m),m ≤ n.
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r proportional to the dimension

Vn(Z0) Vm(Z0 ∩ Bm
u ) Vn−l(Z0 ∩ Bn−l

u ) Vn−l(Z0∩L)

r = an,
a > 0
γ(a, n),
(Typ DI*)

E→ 1
Var→ 0

E→ u
Var→ 0

E→ Int(a, u, l)
Var→ 0

E→ e
l
2

Var→ 0

constant m ∈ N, constant l ∈ N0, L ∈ G(n, n − l)

γ(1, n) = γVoronoi(n)!
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The Voronoi case

Vn(Z0) Vm(Z0 ∩ Bm
u ) Vn−l(Z0 ∩ Bn−l

u ) Vn−l(Z0∩L)

E→ 1
Var→ 0

E→ u
Var→ 0

E→ e
l
2 (1− exp

[
− ue−

l
2
]
)

Var→ 0
E→ e

l
2

Var→ 0
constant m ∈ N, constant l ∈ N0, L ∈ G(n, n − l)

The results of Alishahi and Sharifitabar (on Vn(Z0) and l = 0) are of
course consistent with ours.

All (section) volumes converge in squared mean.

The variance converges always exp. fast (except for m ∈ {1, 2}).
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Slicing problem and isotropic constant

Let K ⊂ Rn be a convex body with Vn(K ) = 1. Is there a hyperplane
H ⊂ Rn such that

Vn−1(K ∩ H) ≥ c

with some universal constant c > 0?

For a convex body K ⊂ Rn, the isotropic constant LK of K is defined by

n · L2
K := min

T

1

Vn(TK )1+ 2
n

∫
TK
‖x‖2 dx .

Is there a universal constant C such that

LK ≤ C

for all convex bodies K ⊂ Rn and all n ∈ N?
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Some known results

LK ≤ c · n1/4 log(n) Bourgain (1991)

LK ≤ c · n1/4
Klartag (2006)

Conjecture holds for special classes of bodies (zonoids, ...)

LP ≤ C · (f0(P)/n)1/2
Alonso-Gutiérrez, Bastero, Bernués, Wolff (2010)

The isotropic constant of certain classes of random polytopes is
bounded with high probability:

Gaussian polytopes Klartag, Kozma (2008)

Random polytopes whose vertices have independent coordinates
Random polytopes spanned by r. points from Sn−1

Alonso-Gutiérrez (2008)

Random polytopes in 1-unconditional bodies Dafnis, Giannopoulos, Guédon (2010)
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Sections through random polytopes

Theorem (Hörrmann & H)

Let Z 0 :=
(
Vn(Z0)

)− 1
n Z0 be the normalized zero cell of a PHP in Rn with

distance exponent r = an and intensity γ(a, n, λ). Then, for any
L ∈ G(n, n − 1),

P
{

Vn−1(Z 0 ∩ L) >

√
e

2

}
≥ 1− C

(
1√
n

(
2√
5

)an

+

(
2√
5

)n)
for a universal constant C > 0.
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