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How to tackle pattern characterisation ?

Problem formulation :

◮ study physical phenomenas → register data

◮ spatial data → data element = location + characteristic
(“where the phenomenon take place” + “what it is
measured”)

◮ characterise the shape outlined by the observed data

Methodology : probability, statistics and a good ... feeling ...

◮ exploratory statistics → do we see any pattern in the data ?

◮ formulate hypothesis and modeling → define the shape we
would like to find ...

◮ Monte Carlo simulation → build the shape in the middle of
the data field ...

◮ inference → describe the pattern characterising the shape,

◮ validate the results → does the detected shape really exist ?



Remote sensing

Road and hydrographic networks

a) b)

Figure: a) Rural region in Malaysia (http://southport.jpl.nasa.gov), b)
Forest galleries (BRGM).



Cosmology : spatial distribution of galactic filaments (1)

Figure: Cuboidal sample from the North Galactic Cap of the 2dF Galaxy
Redshift Survey. Diameter of a galaxy ∼ 30× 3261.6 light years.



Cosmology : study of mock catalogues (2)

a) b)

Figure: Galaxy distribution : a) Homogeneous region from the 2dfN
catalogue, b) A mock catalogue within the same volume



Epidemiology (veterinary context)

Disease : sub-clinical mastitis for diary herds

◮ points → farms location

◮ to each farm → disease score (continuous variable)

◮ clusters pattern detection : regions where there is a lack of
hygiene or rigour in farm management
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Figure: The spatial distribution of the farms outlines almost the entire
French territory (INRA Avignon).



Markovian modeling of the pattern

Main hypothesis : the hidden pattern is a complicate entity made
of simple interacting objects

Examples :

◮ road and hydrographic networks, cosmological filamentary
structure

◮ “invisible” regions : clusters

Two “classical” families of models

◮ Markov random fields (Li, Winkler, Geman, Younes, etc.)

◮ Markov marked point processes (Baddeley, Lieshout, Møller,
Stoyan,etc.)

◮ key point : local specification of the model → break the
complexity of the pattern



Marked point processes : definition, properties, examples

Key hypothesis reformulated :

the shape we are looking for is the realization of a marked point
process

Ingredients :

◮ measure space : (K ,B, ν), K ⊂ R
d , B the Borel σ−algebra

and 0 < ν(K ) < ∞ the Lebesgue measure

◮ probability space: (Ω,F , µ)

Configuration space :

Ω = ∪∞
n=0Kn, n ∈ N

Kn = {k1, . . . , kn} ⊂ K

Definition :
a point process in K is measurable mapping from a probability
space in (Ω,F).



Marked point processes :

a random sequence y = {yn = (kn,mn)} such that the points kn
are a point process in K and mn are the marks corresponding for
each kn. Let (M,M, νM) be the marks space where νM(M) = 1.

In pattern recognition :

◮ kn : objects locations

◮ mn : objects characteristics (geometrical shape, texture, but
also : species,age, disease,etc.)

The simplest marked point process is the Poisson object process :

◮ number of objects ∼ Poisson(ν(K ))

◮ locations and marks independent : ki ∼
1

ν(K) and mi ∼ νM



Poisson object process

• reference probability measure

µ(F ) =
∞∑

n=0

e−ν(K)

n!

∫

K×M

· · ·

∫

K×M

1F{(k1,m1), . . . , (kn,mn)}

×dν(k1)dνM(m1) . . . dν(kn)dνM(m)

for all F ∈ F
• Boolean model : analytical formulas, null hypothesis ↔ the law
is completely known
• no interaction → no shape ...
• more complicate models → specifying a probability density p(y)
such that :

P(Y ∈ F ) =

∫

F

p(y)µ(dy)

• in this case the normalising constant is not known



A word on random sets (1)

Intuitive definition : general mathematical tool dealing with sets of
objects having random characteristics

• marked point processes ↔ random sets

Capacity functional : local characterisation of the distribution of a
random set Ξ

TΞ(K) = P(Ξ ∩ K 6= ∅)

where K is any compact set in R
d



A word on random sets (2)

Choquet theorem : the distribution of a random set is completely
determined by knowledge of the capacity functional

• important tools for exploratory statistics : spherical contact
distribution, volumic fraction, mean quantities (perimeter, area,
volume), covariance, moments, etc.

• Boolean models only → analytical closed form of these quantities

• ... not always very informative ...

• this may justify the need of the probability densities for more
complex models



Interacting marked point processes (1)

Construction of the probability density :

◮ specify the interaction functions φ(k) : Ω → R
+

φ(yi1 , . . . , yik )
(k)

for any k−tuple of objects

◮ the density is the product of all these functions

p(y) = α
∏

yi∈y

φ(yi )
(1) · · ·

∏

{yi1 ,...,yik }∈y

φ(yi1 , . . . , yik )
(k)

◮ α the normalising constant is now known



Interacting marked point processes (2)

Papangelou conditional intensity : local specification of the model

λ(ζ; y) =
p(y ∪ {ζ})

p(y)

for ζ ∈ K ×M and ζ /∈ y

• interpretation : probability (energy contribution) of adding a new
object to the configuration

• plays a similar role as the conditional probabilities for Markov
random fields



Interacting marked point processes (3)

Properties of the probability density : a lot of freedom for
specifying models

• integrability (Ruelle stability)

p(y) ≤ Λn(y)

• local stability → implies Ruelle stability ; important for MCMC
dynamics convergence

λ(ζ; y) ≤ Λ

• monotonic or anti-monotonic : order relation on the
configuration space (inclusion)



Markov point processes (1)

Neighbourhood system :

• ∼ : symmetric, reflexive neighbourhood relation K ×M

• clique : a configuration y ∈ Ω such that u ∼ v for any u, v ∈ y ;
the empty set is a clique

Examples : distance (Euclidean, Hausdorff), set intersection, etc.

Definition (Ripley and Kelly ’77) : A point process Y is Markov
w.r.t. the symmetric, reflexive relation ∼ on K ×M , if for all y
such that p(y) > 0 :

• p(z) > 0 for all z ⊂ y

• p(y∪{ζ})
p(y) depends only on ζ and ∂(ζ) ∩ y = {η ∈ y : η ∼ ζ}



Markov point processes (2)

Example

the density of Poisson object process with intensity β is :

p(y) = βn(y) exp[(1 − β)ν(K )]

with respect to µ(·).

• p(y) > 0 for any configuration y

• λ(ζ; y) = β1{ζ /∈ y}

⇒ p(·) is Markov for any choice of the neighbourhood system

In accordance with the fact that a Poisson object process
represents complete spatial randomness



Spatial Markov property

Theorem
Let Y be a Markov point process with density p(·) on a complete,

separable metric space (K , d) and consider a Borel set A ⊆ K.

Then the conditional distribution of X ∩ A given X ∩ Ac depends

only on Y restricted to the neighbourhood

∂(A) ∩ Ac = {u ∈ K \ A : u ∼ a for some a ∈ A}

Remarks :
• a drawing to better understand ...

• compare with the result obtained for Markov random fields.



Hammersley-Clifford factorisation

Theorem
A marked point process density p : Ω → R

+ is Markov with

respect to the neighbourhood relation ∼ if and only if there is a

measurable function φc : Ω → R
+ such that

p(y) =
∏

cliques z⊆y

φc(z), α = φ(∅)

for all y ∈ Ω.

Gibbs point processes :

p(y) =
1

Z
exp [−U(y)] =

1

Z
exp


−

∑

cliques z⊆y

Uc(z)




where Z is the partition function, U is the system energy and Uc is
the clique potential (Uc(∅) = 0).



Example

Poisson object process with density

p(y) = e(1−β)ν(K)
∏

y∈y

β

• the clique interaction functions are given by :

φc(∅) = e(1−β)ν(K)

φc({ζ}) = β

and φc ≡ 1 for cliques of two or more objects
• the clique potentials

Uc(·) = − log φc(·)

• confirmation of the lack of interaction



Distance interaction model - Strauss model :
(Strauss, 1975), (Kelly and Ripley, 1976)

p(y) ∝ βn(y)γsr (y), β > 0, γ ∈ [0, 1]
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Figure: Strauss model realisations for different parameter values : a)
γ = 1.0, b) γ = 0.5 and c) γ = 0.0.



Area interaction model :
(Baddeley and van Lieshout, 1995)

p(y) ∝ βn(y)γ−ν[Z(y)], β, γ > 0
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Figure: Area interaction model realisations for different parameter
values : a) γ = 1.0, b) γ > 1.0 and c) γ < 1.0.



Candy model :

(van Lieshout and Stoica, 2003), (Stoica, Descombes and Zerubia,
2004)

p(y) ∝ γ
nf (y)
f γ

ns(y)
s γ

nd (y)
d γ

no(y)
o γ

nr (y)
r ,

with γf , γs , γd > 0 and γo , γr ∈ [0, 1]

a)
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Figure: Candy model realisations.



Bisous model :
(Stoica, Gregori and Mateu, 2005)

p(y) ∝

[
q∏

s=0

γ
ns (y)
s

]
∏

κ∈Γ⊂R

γnκ(y)κ γs > 0, γκ ∈ [0, 1]
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Figure: Random shapes generated with Bisous model.



Markov chain Monte Carlo algorithms

Problem : sampling probability distribution that are not available
in closed form (e.g. normalising constant not available)

Solution : Monte Carlo method

◮ simulating a Markov chain → building a reversible transition
kernel

◮ the equilibrium distribution of the chain is the distribution we
want to sample

◮ statistical inference is possible

◮ several solutions : Gibbs sampler, Metropolis-Hastings, birth
an death processes, stochastic adsorption, RJMCMC, exact
simulation (CFTP, clan of ancestors, etc.)

◮ open problems : convergence at infinity (almost all the
methods) and parameter dependence (“perfect” methods)



Adapted MH dynamics

◮ theoretical convergence properties → in practice burning-in

time

◮ local computations

◮ allows improvements : transition kernels that “help” the
model

Figure: Extremities marked by triangles are connected and further than
1
2 lmax + rc to the boundary, those labeled by a black disk are closer than
1
2 lmax + rc to the boundary of K .



Perfect sampling algorithms

Exact simulation : CFTP, clan of ancestors, exact
Metropolis-Hastings, Gibbs

◮ the simulated chain indicates by itself whenever convergence
is reached

◮ model parameters should have “very, very nice” values

◮ can be applied in practice only to a restricted range of
parameters



Strauss model : convergence speed for exact sampling methods

(van Lieshout and Stoica, 2006)
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Figure: Exact simulation algorithms applied to Strauss model : a) CFTP,
b) clan of ancestors, c) Metropolis-Hastings and d) Gibbs.



Statistical inference problems
Problem I : parameter estimation

◮ observe the pattern y and find the model parameters θ able to
statistically reproduce it

◮ complete and incomplete data : Monte Carlo maximum
likelihood, pseudo-likelihood, EM ...

◮ open problem : sampling p(θ|y) ...

Problem II : pattern detection

◮ observe the data d and find y “hidden”

◮ the model parameters are : hidden, modeled, unknown

◮ open problem : the detected pattern does it really exist ...?

Problem III : shape modeling

◮ observe a phenomenon and propose a model doing the
“same” ...

◮ needs the time dimension

◮ open problem : time, what it is ? “crystal ball” ?



Statistical pattern detection (1)

Build the model : probability density construction

p(y, θ) ∝ exp

[
−
Ud(y|θ) + Ui(y|θ)

Z (θ)
+ log p(θ)

]

◮ interaction energy Ui(y|θ) → objects interactions

◮ data energy Ud(y|θ) induced by the data field d → object
locations

◮ if the interaction parameters are unknown → prior model p(θ)

Pattern estimator :
the object configuration that maximises the probability density

(ŷ, θ̂) = arg min
Ω×Ψ

{
Ud(y|θ) + Ui(y|θ)

Z (θ)
− log p(θ)

}

with Ψ the model parameters space



Statistical pattern detection (2)

Simulated annealing : global optimisation technique

◮ sampling from p(y, θ)1/Tsa while slowly Tsa → 0

◮ convergence towards the uniform distribution on the
configuration subspace minimising U(y, θ) (Stoica, Gregori
and Mateu, 2005)

Level sets estimators :

◮ visit maps for compact regions in K (Heinrich, Stoica and
Tran, 2012) :

{T (x) > α} ⇒ {Tn(x) > α}

◮ two challenges : discretisation and Monte Carlo
approximations

◮ average behaviour of the pattern (fixed temperature)



Build the machine ...
Remotely sensed images :

◮ interaction energy : Candy model (random segments)
◮ data energy : local hypothesis tests (checking the pixels

covered by a segment)

segment

Dsl

Ds

Dsr

Dh
Del

Der

Figure: Connected segments approximating a thin network.



Galaxies catalogues :

◮ interaction energy : Bisous model (random cylinders)

◮ data energy : local tests (density and spread of galaxies inside
a cylinder)
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Figure: Locating interacting cylinders in a field of points.



Epidemiological data :

◮ interaction energy : Strauss and Area-interaction model
(random disks)

◮ data energy : local statistical test (the average score of the
farms covered by a disk)

a) b)

Figure: Data→ field of marked points : a) observed clusters, b) clusters
approximated by random disks.



Road network extraction

(Stoica, Descombes, van Lieshout and Zerubia, 2002)

a) b)

Figure: Rural region in Malaysia : a) original image; b) obtained results.



Forest galleries : verifying the results
(Stoica, Descombes and Zerubia, 2004)

a) b)

c) d)

Figure: Forest galleries extraction : a) original image ; b) ground truth ;
c)-d) obtained results. Data provided by BRGM.



Catalogue NGP150 (1)
(Stoica, Martinez and Saar, 2007)
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Figure: a) Original data. b) Cylinder configuration obtained after running
the simulated annealing algorithm.



Catalogue NGP150 (2)

a)

b)

Figure: a) Cover probability thresholded at 95%. b) Structure of a
filament : green shading shows the filament obtained with PW = 0.5, red
shading PW = 0.95.



Epidemiology : sub-clinical mastitis data

(Stoica, Gay and Kretzschmar, 2007)
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Figure: Disease data scores and coordinates for the year 1996 : a) disk
configuration obtained using the simulated annealing algorithm ; b) cover
probabilities.



Does the detected pattern really exist ?

Idea : the sufficient statistics of the model → morphological
descriptors of the shape hidden by the data

◮ turn the machine at constant temperature T = 1

◮ compute the average of the sufficient statistics

◮ compare with the maximum value obtained for the permuted
data

Sufficient statistics :

◮ cosmology : free cylinders, cylinders with one extremity
connected, cylinders with both extremities connected

◮ epidemiology : number of pairs of overlapping disks, surface
occupied by the disks



Test for the galaxy catalogues

Permuted data : keeping the same number of galaxies while
spreading them uniformly (binomial point process)

Data
Sufficient statistics NGP150 NGP200 NGP250

n̄2 4.13 5.83 9.88
n̄0 15.88 21.19 35.82
n̄1 21.35 35.58 46.49

Simulated data (100 binomial catalogues)
Sufficient statistics NGP150 NGP200 NGP250

max n̄2 0.015 0.05 0.015
max n̄0 0.54 0.27 0.45
max n̄1 0.39 0.24 0.33



Test for the epidemiological data

Permuted data : keeping the same farm locations while exchanging
the score disease

Results :

◮ sufficient statistics for the data from the year 1996 :

n̄(y) = 74.10, ν̄[Z (y)] = 312.46, n̄o = 555.08

◮ maximum values of the sufficient statistics for 100 simulated
data fields

n̄(y) = 2.36, ν̄[Z (y)] = 13.83, n̄o = 2.62

Interpretation : this test does not say if the pattern is well
detected, but it says that there is something to be detected ...



How similar are two data sets ?

Cosmology : compare the sufficient statistics for 22 mock
catalogues with the ones for the observation (Stoica, Martinez and
Saar, 2010)

Discussion

◮ mock catalogues exhibit filaments

◮ mock filaments are generally shorter, more fragmented and
more dense

◮ Bisous model : good for testing the filamentary structure
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Figure: Comparison of the sufficient statistics distributions for the real
data (dark box plot) and the mock catalogues.



Spatial Markov models :

◮ marked point processes allow statistical and morphological
description of the pattern

◮ good synthesis properties

◮ limitations : models remain just models ...

Perspectives :

◮ random geometry (marked point processes, random fields) →
modeling, simulation, statistics and also temporal
dimension ...

◮ applications : astronomy, cosmology, geology, environmental
sciences
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