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How to tackle pattern characterisation ?

Problem formulation :

» study physical phenomenas — register data

» spatial data — data element = location + characteristic

(“where the phenomenon take place” + “what it is
measured”)

» characterise the shape outlined by the observed data

Methodology : probability, statistics and a good ... feeling ...

>

>

exploratory statistics — do we see any pattern in the data ?

formulate hypothesis and modeling — define the shape we
would like to find ...

Monte Carlo simulation — build the shape in the middle of
the data field ...

inference — describe the pattern characterising the shape,

validate the results — does the detected shape really exist ?



Remote sensing

Road and hydrographic networks

Figure: a) Rural region in Malaysia (http://southport.jpl.nasa.gov), b)
Forest galleries (BRGM).



Cosmology : spatial distribution of galactic filaments (1)

Figure: Cuboidal sample from the North Galactic Cap of the 2dF Galaxy
Redshift Survey. Diameter of a galaxy ~ 30 x 3261.6 light years.



Cosmology : study of mock catalogues (2)

wo 00

Figure: Galaxy distribution : a) Homogeneous region from the 2dfN
catalogue, b) A mock catalogue within the same volume



Epidemiology (veterinary context)

Disease : sub-clinical mastitis for diary herds

» points — farms location
» to each farm — disease score (continuous variable)

» clusters pattern detection : regions where there is a lack of
hygiene or rigour in farm management
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Figure: The spatial distribution of the farms outlines almost the entire
French territory (INRA Avignon).



Markovian modeling of the pattern

Main hypothesis : the hidden pattern is a complicate entity made
of simple interacting objects

Examples :

» road and hydrographic networks, cosmological filamentary
structure

> “invisible” regions : clusters

Two “classical” families of models

» Markov random fields (Li, Winkler, Geman, Younes, etc.)

» Markov marked point processes (Baddeley, Lieshout, Mgller,
Stoyan,etc.)

» key point : local specification of the model — break the
complexity of the pattern



Marked point processes : definition, properties, examples

Key hypothesis reformulated :
the shape we are looking for is the realization of a marked point
process

Ingredients :

» measure space : (K,B,v), K C R?, B the Borel o—algebra
and 0 < ¥(K) < oo the Lebesgue measure

» probability space: (Q,F, 1)
Configuration space :
Kn={ki,....,kn} C K

Definition :
a point process in K is measurable mapping from a probability
space in (€, F).



Marked point processes :

a random sequence y = {y, = (kn, m,)} such that the points k,
are a point process in K and m, are the marks corresponding for
each k,. Let (M, M,vp) be the marks space where vy (M) = 1.

In pattern recognition :
» k, : objects locations

» mp : objects characteristics (geometrical shape, texture, but
also : species,age, disease,etc.)

The simplest marked point process is the Poisson object process

» number of objects ~ Poisson(v(K))

» |ocations and marks independent : k; ~ V(IK) and m; ~ vy




Poisson object process

e reference probability measure

o0 —

e v(K)
W(F) = 2 . /KXM---/KXMIF{(kl,ml),...,(k,,,m,,)}
><d1/(k1)d1/M(m1)...du(k,,)dz/M(m)

forall F e F

e Boolean model : analytical formulas, null hypothesis <> the law
is completely known

® no interaction — no shape ...

e more complicate models — specifying a probability density p(y)
such that :

P(Y € F) = /Fp(y)u(dy)

e in this case the normalising constant is not known



A word on random sets (1)

Intuitive definition : general mathematical tool dealing with sets of
objects having random characteristics

e marked point processes <> random sets

Capacity functional : local characterisation of the distribution of a
random set =

T=(K) =P(=ZN K # 0)

where IC is any compact set in RY



A word on random sets (2)
Choquet theorem : the distribution of a random set is completely
determined by knowledge of the capacity functional
e important tools for exploratory statistics : spherical contact
distribution, volumic fraction, mean quantities (perimeter, area,
volume), covariance, moments, etc.
e Boolean models only — analytical closed form of these quantities

e ... not always very informative ...

e this may justify the need of the probability densities for more
complex models



Interacting marked point processes (1)

Construction of the probability density :
» specify the interaction functions ¢(¥) : Q — R
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for any k—tuple of objects

> the density is the product of all these functions

py) =)V T ot yi)

Yi€y {igseyi Y€y

» « the normalising constant is now known



Interacting marked point processes (2)

Papangelou conditional intensity : local specification of the model

oy Plyu{c))
AMGy) = p(y)

for(e KxMand( ¢y

e interpretation : probability (energy contribution) of adding a new
object to the configuration

e plays a similar role as the conditional probabilities for Markov
random fields



Interacting marked point processes (3)

Properties of the probability density : a lot of freedom for
specifying models

o integrability (Ruelle stability)

p(y) < A"0)

e |ocal stability — implies Ruelle stability ; important for MCMC
dynamics convergence

ACy) <A

e monotonic or anti-monotonic : order relation on the
configuration space (inclusion)



Markov point processes (1)

Neighbourhood system :
e ~ : symmetric, reflexive neighbourhood relation K x M

e clique : a configuration y € Q such that u ~ v for any u,v €y ;
the empty set is a clique

Examples : distance (Euclidean, Hausdorff), set intersection, etc.
Definition (Ripley and Kelly '77) : A point process Y is Markov
w.r.t. the symmetric, reflexive relation ~ on K x M , if for all y
such that p(y) > 0:

ep(z) >0forallzCy

° % depends only on ( and d({)Ny={ne€y:n~(}



Markov point processes (2)

Example
the density of Poisson object process with intensity 3 is :

p(y) = 8" exp[(1 — B)v(K)]

with respect to p(-).

e p(y) > 0 for any configuration y

* MGy)=p8L{( ¢y}

= p(-) is Markov for any choice of the neighbourhood system

In accordance with the fact that a Poisson object process
represents complete spatial randomness



Spatial Markov property

Theorem

Let Y be a Markov point process with density p(-) on a complete,
separable metric space (K, d) and consider a Borel set A C K.
Then the conditional distribution of X N A given X N A® depends
only on Y restricted to the neighbourhood

A NA ={ue K\A:u~a forsome ac A}

Remarks :
e a drawing to better understand ...

e compare with the result obtained for Markov random fields.



Hammersley-Clifford factorisation

Theorem

A marked point process density p : Q — R is Markov with
respect to the neighbourhood relation ~ if and only if there is a
measurable function ¢ : Q — R such that

p)= I 4@ a=o)

cliques zCy
for all'y € Q.
Gibbs point processes :
1 1
ply) = Sep[-UWI=sep - > Ul2)

cliques zCy

where Z is the partition function, U is the system energy and U, is
the clique potential (U.(0) = 0).



Example
Poisson object process with density

p(y) = e1=A¥(K) H B

yey

e the clique interaction functions are given by :

de(0) = el=AMK)
oc({¢}) = B

and ¢. = 1 for cliques of two or more objects
e the clique potentials

Ue(-) = —log ¢c(")

e confirmation of the lack of interaction



Distance interaction model - Strauss model :
(Strauss, 1975), (Kelly and Ripley, 1976)
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Figure: Strauss model realisations for different parameter values : a)
v=1.0,b) y=0.5and c¢) v = 0.0.



Area interaction model :
(Baddeley and van Lieshout, 1995)

p(y) o By EWL 5y >0

a)
Figure: Area interaction model realisations for different parameter
values : a) y=1.0, b) v > 1.0 and ¢) v < 1.0.



Candy model :
(van Lieshout and Stoica, 2003), (Stoica, Descombes and Zerubia,

2004)
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Figure: Candy model realisations.



Bisous model :
(Stoica, Gregori and Mateu, 2005)
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Figure: Random shapes generated with Bisous model.



Markov chain Monte Carlo algorithms

Problem : sampling probability distribution that are not available
in closed form (e.g. normalising constant not available)

Solution : Monte Carlo method

>

simulating a Markov chain — building a reversible transition
kernel

the equilibrium distribution of the chain is the distribution we
want to sample

statistical inference is possible

several solutions : Gibbs sampler, Metropolis-Hastings, birth
an death processes, stochastic adsorption, RIMCMC, exact
simulation (CFTP, clan of ancestors, etc.)

open problems : convergence at infinity (almost all the
methods) and parameter dependence (“perfect” methods)



Adapted MH dynamics

» theoretical convergence properties — in practice burning-in
time
» local computations

> allows improvements : transition kernels that “help” the
model

Figure: Extremities marked by triangles are connected and further than
L/ max + re to the boundary, those labeled by a black disk are closer than
Elmax + rc to the boundary of K.



Perfect sampling algorithms

Exact simulation : CFTP, clan of ancestors, exact
Metropolis-Hastings, Gibbs

» the simulated chain indicates by itself whenever convergence
is reached

» model parameters should have ‘“very, very nice” values

» can be applied in practice only to a restricted range of
parameters



Strauss model : convergence speed for exact sampling methods
(van Lieshout and Stoica, 2006)

Figure: Exact simulation algorithms applied to Strauss model : a) CFTP,
b) clan of ancestors, c) Metropolis-Hastings and d) Gibbs.



Statistical inference problems
Problem | : parameter estimation

» observe the pattern y and find the model parameters 6 able to
statistically reproduce it

» complete and incomplete data : Monte Carlo maximum
likelihood, pseudo-likelihood, EM ...

» open problem : sampling p(fly) ...
Problem Il : pattern detection

» observe the data d and find y “hidden”

» the model parameters are : hidden, modeled, unknown

» open problem : the detected pattern does it really exist ...7
Problem Il : shape modeling

» observe a phenomenon and propose a model doing the
“same” ...

» needs the time dimension

» open problem : time, what it is 7 “crystal ball” 7



Statistical pattern detection (1)

Build the model : probability density construction

Ua(y|0) + Ui(y|9)
Z(0)

p(y,0) < exp |— + log p(0)

» interaction energy U;(y|f#) — objects interactions

» data energy Uq(y|€) induced by the data field d — object
locations

» if the interaction parameters are unknown — prior model p(6)

Pattern estimator :
the object configuration that maximises the probability density

(.0 = arg min { Ud(Y\H)ZZg)Ui(YW) ~log p(e)}

v
with W the model parameters space




Statistical pattern detection (2)

Simulated annealing : global optimisation technique
» sampling from p(y, #)Y/ 7= while slowly T, — 0

» convergence towards the uniform distribution on the
configuration subspace minimising U(y, 6) (Stoica, Gregori
and Mateu, 2005)

Level sets estimators :

» visit maps for compact regions in K (Heinrich, Stoica and
Tran, 2012) :

{T(x) > a} = {Ty(x) > a}

» two challenges : discretisation and Monte Carlo
approximations

» average behaviour of the pattern (fixed temperature)



Build the machine ...
Remotely sensed images :
» interaction energy : Candy model (random segments)
» data energy : local hypothesis tests (checking the pixels
covered by a segment)
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Figure: Connected segments approximating a thin network.



Galaxies catalogues :
» interaction energy : Bisous model (random cylinders)

» data energy : local tests (density and spread of galaxies inside
a cylinder)

Figure: Locating interacting cylinders in a field of points.



Epidemiological data :

> interaction energy : Strauss and Area-interaction model
(random disks)

» data energy : local statistical test (the average score of the
farms covered by a disk)

a)

Figure: Data— field of marked points : a) observed clusters, b) clusters
approximated by random disks.

b)




Road network extraction

(Stoica, Descombes, van Lieshout and Zerubia, 2002)

| )
Figure: Rural region in Malaysia

a) original image; b) obtained results.




Forest galleries : verifying the results
(Stoica, Descombes and Zerubia, 2004)
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Figure: Forest galleries extraction : a) original image ; b) ground truth ;
c)-d) obtained results. Data provided by BRGM.



Catalogue NGP150 (1)
(Stoica, Martinez and Saar, 2007)

Figure: a) Original data. b) Cylinder configuration obtained after running
the simulated annealing algorithm.



Catalogue NGP150 (2)
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Figure: a) Cover probability thresholded at 95%. b) Structure of a
filament : green shading shows the filament obtained with Py = 0.5, red
shading Py, = 0.95.



Epidemiology : sub-clinical mastitis data

(Stoica, Gay and Kretzschmar, 2007)
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Figure: Disease data scores and coordinates for the year 1996 : a) disk
configuration obtained using the simulated annealing algorithm ; b) cover
probabilities.



Does the detected pattern really exist ?

Idea : the sufficient statistics of the model — morphological
descriptors of the shape hidden by the data

> turn the machine at constant temperature T =1
» compute the average of the sufficient statistics

» compare with the maximum value obtained for the permuted
data

Sufficient statistics :

» cosmology : free cylinders, cylinders with one extremity
connected, cylinders with both extremities connected

> epidemiology : number of pairs of overlapping disks, surface
occupied by the disks



Permuted data :

Test for the galaxy catalogues

spreading them uniformly (binomial point process)

Sufficient statistics NGP150 Nglit;()o NGP250
n 4.13 5.83 0.88
Mo 15.88 21.19 35.82
m 21.35 35.58 46.49

keeping the same number of galaxies while

Sufficient statistics

Simulated data (100

binomial catalogues)

NGP150 | NGP200 NGP250
max 0.015 0.05 0.015
max g 0.54 0.27 0.45
max m 0.39 0.24 0.33




Test for the epidemiological data

Permuted data : keeping the same farm locations while exchanging
the score disease

Results :

» sufficient statistics for the data from the year 1996 :
n(y) = 74.10, ©[Z(y)] = 312.46, n, = 555.08

» maximum values of the sufficient statistics for 100 simulated
data fields

A(y) =2.36, [Z(y)] =13.83, T, =2.62

Interpretation : this test does not say if the pattern is well
detected, but it says that there is something to be detected ...



How similar are two data sets ?

Cosmology : compare the sufficient statistics for 22 mock
catalogues with the ones for the observation (Stoica, Martinez and
Saar, 2010)

Discussion

» mock catalogues exhibit filaments

» mock filaments are generally shorter, more fragmented and
more dense

» Bisous model : good for testing the filamentary structure



Figure: Comparison of the sufficient statistics distributions for the real
data (dark box plot) and the mock catalogues.



Spatial Markov models :

» marked point processes allow statistical and morphological
description of the pattern
» good synthesis properties

> limitations : models remain just models ...

Perspectives :

» random geometry (marked point processes, random fields) —
modeling, simulation, statistics and also temporal
dimension ...

» applications : astronomy, cosmology, geology, environmental
sciences
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