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A random polytope is defined as the convex hull of a
set of points randomly distributed.

Let K be a convex body in R?.

Convex polyhedron, smooth convex body, weirder convex bodies...

Let K,, be the convex hull of n points chosen
uniformly and independently in K.
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A random polytope is defined as the convex hull of a
set of points randomly distributed.

Let K be a convex body in R?.

Convex polyhedron, smooth convex body, weirder convex bodies...
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Random polytopes have been extensively studied as
the previous talk demonstrated.

Asymptotic behavior of the expected number of
k-faces, the expected volume...

Yet amazingly "simple” questions remain open.

2-8




A random polytope is defined as the convex hull of a
set of points randomly distributed.

Let K be a convex body in R?.

Convex polyhedron, smooth convex body, weirder convex bodies...

Let K,, be the convex hull of n points chosen
uniformly and independently in K.

Random polytopes have been extensively studied as
the previous talk demonstrated.

Asymptotic behavior of the expected number of
k-faces, the expected volume...

Yet amazingly "simple” questions remain open. Here's one:

Fix K and define f;(K,) as the number of i-dimensional faces of K.

Is n — E|fo(K,)] a monotone function?
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Isn’t this obvious?

Sometimes adding a point decreases fy.
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There exist convex domains K such that F[fo(K,)]

alternates infinitely between the two extreme behaviors
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For certain configurations of n — 1 points the expected change
in fo when adding a random n" point is negative.

The distribution of the "number of hull points seen by a random

point” is not sufficiently well-understood. %7\

Is it even true?

Barany and Larman showed that there exist " badly-behaved” convex bodies.

There exist convex domains K such that E|fo(K,)]
alternates infinitely between the two extreme behaviors

d—1 d—1

log® " n and nd+1,

/\{\‘ log?~1n
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Why should we care?

Because we're curious. It can't be helped.
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Why should we care?

Because we're curious. It can't be helped.

Because Pierre asked us the question.

There are also some algorithmic motivations:

I'd like to generate sets of points with particular properties.

Near-uniform distribution of combinatorial types.
Avoiding certain patterns.

A natural approach is to do it incrementally.

Monotonicity of fo is a basic "incremental” property.
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What is known?

Exact formula for convex polygonal domains in the plane.
[Buchta-Reitzner 1997]

For any compact convex planar domain K the map n — E[fo(K,)] is increasing.
[Reitzner 2017]

Not much seems known in dimension d > 3.
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[Reitzner 2017]

Not much seems known in dimension d > 3.

What is new?
Sufficiently fast asymptotic growth rate = asymptotic monotonicity.
Theorem. Let Z,, denote the convex hull of n points chosen independently

from a "generic” distribution P on R%. If E[fs_1(Zn)] ~n—eo AnC for
some A, ¢ > 0 then there exists an integer ng such that for any n > ng we

have E[fi—1(Zn+1)] > Elfa—1(Zn)].

5-3



What is known?

Exact formula for convex polygonal domains in the plane.
[Buchta-Reitzner 1997]

For any compact convex planar domain K the map n — E[fo(K,)] is increasing.
[Reitzner 2017]

Not much seems known in dimension d > 3.

What is new?

Sufficiently fast asymptotic growth rate = asymptotic monotonicity.

Theorem. Let Z,, denote the convex hull of n points chosen independently
from a " generic” distribution P on R%. If Elfa—1(Zn)] ~n—oo AnS for
some A, ¢ > 0 then there exists an integer ng such that for any n > ng we

have E[fi—1(Zn+1)] > Elfa—1(Zn)].

Based on a sampling argument (" Clarkson-Shor" ) introduced to analyze
deterministic geometric configurations.
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The Clarkson-Shor technique through an example

Let X be a finite generic set of points in R?.

A k-set of X is a pair (a,b) such that the open halfplane to
the left of the line (ab), oriented from a to b, contains k

points of X.
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points of X.

Open question: what is the maximum number of k-sets in a n-element points set?

si;(X) = number of i-sets of X.

Let R be a random sample of X.
Flip a (biased) coin for each point independently to decide whether to keep it or not.

Elso(R)] =310 si(X)p* (L= p)'> Y0 o si(X)p*(1 — p)* > p*(1 — p)* o (X))

1=

Al
E[#R] = pn
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The Clarkson-Shor technique through an example

Let X be a finite generic set of points in R?.

A k-set of X is a pair (a,b) such that the open halfplane to
the left of the line (ab), oriented from a to b, contains k

points of X.

Open question: what is the maximum number of k-sets in a n-element points set?

si;(X) = number of i-sets of X.

Let R be a random sample of X.
Flip a (biased) coin for each point independently to decide whether to keep it or not.

E[so(R)] = 31 si(X)p*(1 —p)'> 38 o si(X)p*(1 —p)* = p*(1 —p)F 30 s6(X)

E[#R] = pn = for any choice of p we have 3%  s;(X) < S p)E -

Setting p = & yields that SF , 5i(X) = O(nk) for any n-points set X.
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Expected size of the convex hull

Let P be a "generic’ probability distribution on R<.

d + 1 points almost surely do not lie on a common hyperplane.
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Expected size of the convex hull

Let P be a "generic’ probability distribution on R<.

d + 1 points almost surely do not lie on a common hyperplane.

Let fi(n) denote the expected number of i-dimensional faces
of the convex hull of n points chosen independently from P.

The question is whether n — f;(n) is monotone.

Let s;(n) denote the expected number of i-sets among n
points chosen independently from P.
In particular so(X) = fa—1(X).

Step 1. sg(n) — sg(n —1) > dSo(n)n—Sl(n)

Step 2. so(r) > xz%so(n) + 2(1 — z)s1(n) where 1 <r <n and z = Z=¢.

Step 3. Use the asymptotic behavior of fi—1(n) = so(n) to express so(r) in terms
of S0 (n)

7-4



Step ]. SO(TL) — So(n _ 1) Z dSo(n)n_Sl(n)

Let Z be a set of n points chosen independently from P.

Pick a point g € Z and remove it.
s0(S) = s0(Z\{a}) + > 1 facet of cr(z) LaeF — #1 — sets cutting off ¢
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Let Z be a set of n points chosen independently from P.

Pick a point g € Z and remove it.
s0(S) = s0(Z\{a}) + > 1 facet of cr(z) LaeF — #1 — sets cutting off ¢

Sum over all choices of the point ¢ in Z:

nso(Z) = (Zeez 50(Z\{a)) + (Sitacet of cniz) Lacz Laer) = 51(2)
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Step ]. SO(TL) — Sg(n _ 1) Z dSo(n)n_Sl(n)

Let Z be a set of n points chosen independently from P.

Pick a point g € Z and remove it.
s0(S) = s0(Z\{a}) + > 1 facet of cr(z) LaeF — #1 — sets cutting off ¢

Sum over all choices of the point ¢ in Z:

nso(Z) = (Zeez 50(Z\{a)) + (Sitacet of cniz) Lacz Laer) = 51(2)

Since every facet of CH(Z) has at least d vertices (and fg_1 = s0):

nso(2) > (L ez 50(Z \ {a})) + dso(2) = 51(2)

Taking the expectation over the choice of Z:

nso(n) > nso(n — 1) + dso(n) — s1(2)

8-4



Step 2. so(r) > z%s9(n) + 2%(1 — x)s1(n) where 1 <r <n and z = Z=%.

Let Z be a set of n points chosen independently from P.

Let r € {1,2,...,n} and let R be a r-element subset of Z chosen uniformly.

9-1



Step 2. so(r) > z%s9(n) + 2%(1 — x)s1(n) where 1 <r <n and z = Z=%.

Let Z be a set of n points chosen independently from P.
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so(R) 2 30(2)% + sl(z)%
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Let Z be a set of n points chosen independently from P.
Let r € {1,2,...,n} and let R be a r-element subset of Z chosen uniformly.

Count how many of the 0- and 1-sets of Z became 0O-sets of R:

n—d—l)

so(R) = SO(Z)% + sl(Z)(”“TSZ

Taking the expectation over the choice of Z:
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Let Z be a set of n points chosen independently from P.

r—d

n—d"

Let r € {1,2,...,n} and let R be a r-element subset of Z chosen uniformly.

Count how many of the 0- and 1-sets of Z became 0O-sets of R:

) (")
so(R) > so(Z) ) + 51(2) ™
Taking the expectation over the choice of Z:
) (")
SO(T) > SO(”) (n) + 81(7?,) (n)
Putting x = :;:fi we have

(%)

Altogether,  so(r) > 2%s¢(n) + 2%(1 — x)s1(n).

n—d n—d—1
(r—d) Z ZCd and ( r—d ) Z :L,d(l —.CC)



Step 3.

From Step 1 we have fi—1(n) > fa—1(n —1) < dso(n) > si1(n)

r—d
n—d"

From Step 2 we have sq(r) > 2%so(n) + 2%(1 — )s1(n) where x =

We now find some value 7(n) such that for all n large enough
so(r) < ((d+ 1)z — dz?)so(n)
and thus for all n large enough fa—1(n) > fa—1(n —1)
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Setting r > Ne we get so(r) < (1+¢)Ar® = £££ (7)° (1 - 9 An°) < 3%

Show that for n large enough there exists r > N, such that

e (2) < ((d+ 1)z — dz™") where x =
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Step 3.

From Step 1 we have fi—1(n) > fa—1(n —1) < dso(n) > si1(n)

From Step 2 we have so(r) > 2%so(n) + 2%(1 — x)s1(n) where z = L=2.

We now find some value 7(n) such that for all n large enough
so(r) < ((d+ 1)z — dz?)so(n)
and thus for all n large enough fa—1(n) > fa—1(n —1)

This is the only
fa—1(n) __ 1

A sufficient condition is that limy, e =2 = < assumption we make
on the distribution P.

For any ¢ > 0 there exists N¢ such that
for all n > N, we have (1 —e¢)An® < fq—1(n) < (1 +¢€)An°©

Setting r > Ne we get so(r) < (1+ €)Ar® = 1 (L) ((1 — €)An®) < 1££ (L)% s50(n)

Show that for n large enough there exists r > N, such that

lte (i)c < ((d + 1)a:d — dxd+1) where = ;_d.

l1—e \n
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From facets to other faces

111

So, when K is smooth E|f;_1(K,)| is asymptotically increasing.

When K is polyhedral this technique cannot say much...

Since K, is a. s. simplicial, E[fs—2(K,)] = £E[fa—1(K»)] is also
asymptotically monotone.
Every (d — 1)-face is incident to d (d — 2)-faces.

For d = 3 we have fo(Kn) =2 — f2(Kn) + f1(Kn) =24 3 f2(Ky)
by Euler’s relation and E[fo(K,)] is also asymptotically monotone.



To summarize

An interesting property.

Any sufficiently fast asymptotic growth of E[fs—1]| cannot hide oscillations.

A simple yet efficient probabilistic technique to analyze geometric configurations.

Introduce a notion of "levels”.
Sample the configuration and analyze how the levels "propagate”.

Optimize the sampling rate.
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