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A random polytope is defined as the convex hull of a
set of points randomly distributed.

Random polytopes have been extensively studied as
the previous talk demonstrated.

Asymptotic behavior of the expected number of
k-faces, the expected volume...

Yet amazingly ”simple” questions remain open.

Let K be a convex body in Rd.

Let Kn be the convex hull of n points chosen
uniformly and independently in K.

Convex polyhedron, smooth convex body, weirder convex bodies...

Here’s one:

Fix K and define fi(Kn) as the number of i-dimensional faces of Kn.

Is n 7→ E[f0(Kn)] a monotone function?
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Why should we care?

Because we’re curious. It can’t be helped.

There are also some algorithmic motivations:

I’d like to generate sets of points with particular properties.

A natural approach is to do it incrementally.

Monotonicity of f0 is a basic ”incremental” property.

Near-uniform distribution of combinatorial types.

Avoiding certain patterns.

Because Pierre asked us the question.
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What is known?

Exact formula for convex polygonal domains in the plane.

[Buchta-Reitzner 1997]

For any compact convex planar domain K the map n 7→ E[f0(Kn)] is increasing.
[Reitzner 201?]

Not much seems known in dimension d ≥ 3.
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What is known?

What is new?

Theorem. Let Zn denote the convex hull of n points chosen independently
from a ”generic” distribution P on Rd. If E[fd−1(Zn)] ∼n→∞ Anc for
some A, c > 0 then there exists an integer n0 such that for any n ≥ n0 we
have E[fd−1(Zn+1)] > E[fd−1(Zn)].

Sufficiently fast asymptotic growth rate ⇒ asymptotic monotonicity.

Based on a sampling argument (”Clarkson-Shor”) introduced to analyze
deterministic geometric configurations.

Exact formula for convex polygonal domains in the plane.

[Buchta-Reitzner 1997]

For any compact convex planar domain K the map n 7→ E[f0(Kn)] is increasing.
[Reitzner 201?]

Not much seems known in dimension d ≥ 3.
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Let X be a finite generic set of points in R2.

A k-set of X is a pair (a, b) such that the open halfplane to
the left of the line (ab), oriented from a to b, contains k
points of X.

Open question: what is the maximum number of k-sets in a n-element points set?

si(X) = number of i-sets of X.

Let R be a random sample of X.

Flip a (biased) coin for each point independently to decide whether to keep it or not.

E[s0(R)] =
∑n−2
i=0 si(X)p2(1− p)i

E[#R] = pn

≥

⇒ for any choice of p we have
∑k
i=0 si(X) ≤ n

p(1−p)k .

Setting p = 1
k

yields that
∑k
i=0 si(X) = O(nk) for any n-points set X.

≥
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Expected size of the convex hull

Let P be a ”generic” probability distribution on Rd.

Let fi(n) denote the expected number of i-dimensional faces
of the convex hull of n points chosen independently from P.

In particular s0(X) = fd−1(X).

Step 1. s0(n)− s0(n− 1) ≥ ds0(n)−s1(n)
n

The question is whether n 7→ fi(n) is monotone.

Step 2. s0(r) ≥ xds0(n) + xd(1− x)s1(n) where 1 ≤ r ≤ n and x = r−d
n−d .

Let si(n) denote the expected number of i-sets among n
points chosen independently from P.

Step 3. Use the asymptotic behavior of fd−1(n) = s0(n) to express s0(r) in terms
of s0(n).

d+ 1 points almost surely do not lie on a common hyperplane.
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Let Z be a set of n points chosen independently from P.
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s0(S) = s0(Z \ {q}) +
∑
F facet of CH(Z)

1q∈F −#1− sets cutting off q
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∑
q∈Z 1q∈F

)
− s1(Z)

Since every facet of CH(Z) has at least d vertices (and fd−1 = s0):

ns0(Z) ≥
(∑

q∈Z s0(Z \ {q})
)
+ ds0(Z)− s1(Z)

Taking the expectation over the choice of Z:

ns0(n) ≥ ns0(n− 1) + ds0(n)− s1(Z)
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Let Z be a set of n points chosen independently from P.

Let r ∈ {1, 2, . . . , n} and let R be a r-element subset of Z chosen uniformly.

Step 2. s0(r) ≥ xds0(n) + xd(1− x)s1(n) where 1 ≤ r ≤ n and x = r−d
n−d .
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Let Z be a set of n points chosen independently from P.

Let r ∈ {1, 2, . . . , n} and let R be a r-element subset of Z chosen uniformly.

Count how many of the 0- and 1-sets of Z became 0-sets of R:

s0(R) ≥ s0(Z)
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Taking the expectation over the choice of Z:

s0(r) ≥ s0(n)
(n−d
r−d)
(nr)

+ s1(n)
(n−d−1

r−d )
(nr)

Putting x = r−d
n−d we have

(n−d
r−d)
(nr)

≥ xd and
(n−d−1

r−d )
(nr)

≥ xd(1− x).

Altogether, s0(r) ≥ xds0(n) + xd(1− x)s1(n).

Step 2. s0(r) ≥ xds0(n) + xd(1− x)s1(n) where 1 ≤ r ≤ n and x = r−d
n−d .
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Step 3.

From Step 1 we have fd−1(n) > fd−1(n− 1)⇔ ds0(n) > s1(n)

From Step 2 we have s0(r) ≥ xds0(n) + xd(1− x)s1(n) where x = r−d
n−d .

We now find some value r(n) such that for all n large enough

s0(r) < ((d+ 1)xd − dxd+1)s0(n)

and thus for all n large enough fd−1(n) > fd−1(n− 1)
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fd−1(n)

Anc = 1
This is the only

assumption we make
on the distribution P.
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From facets to other faces

So, when K is smooth E[fd−1(Kn)] is asymptotically increasing.

When K is polyhedral this technique cannot say much...

Since Kn is a. s. simplicial, E[fd−2(Kn)] =
d
2
E[fd−1(Kn)] is also

asymptotically monotone.
Every (d− 1)-face is incident to d (d− 2)-faces.

For d = 3 we have f0(Kn) = 2− f2(Kn) + f1(Kn) = 2 + 1
2
f2(Kn)

by Euler’s relation and E[f0(Kn)] is also asymptotically monotone.
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To summarize

A simple yet efficient probabilistic technique to analyze geometric configurations.

Introduce a notion of ”levels”.

Sample the configuration and analyze how the levels ”propagate”.

Optimize the sampling rate.

An interesting property.

Any sufficiently fast asymptotic growth of E[fd−1] cannot hide oscillations.
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