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Fractal analysis of medical images

Stochastic modeling

Simulation of 2d anisotropic fractional Brownian field
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Fractal analysis of medical images

ROI medical images = textures

Goal : use texture analysis to extract diagnostically meaningful
information

Method : fractal analysis to characterize texture via statistical
self-similarity or scale invariance through a fractal index H € (0,1)
Numerous methods and studies !
[Lopes and Betrouni, 2009]



dense breast tissue

fatty breast tissue

» Validation of self-similarity using power spectrum method [Heine et

al, 2002
! H €[0.33,0.42].

» Discrimination of dense and fatty breast tissue using WTMM
method [Kestener et al, 2001]

H € [0.55,0.75] H €1[0.2,0.35]
(dense breast tissue)  (fatty breast tissue)
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Examples : Trabecular bone microarchitecture

Dataset of 211 high-resolution digital X-ray images of calcaneum (a heel
bone) with standardized acquisition procedure [Lespessailles et al., 2007] :

PR L

ROI location control case  osteoporotic case

» Validation of self-similarity using variogram and power spectrum
methods on calcaneous bone [Benhamou et al, 94], on cancellous
bone [Caldwell et al, 94]

» Discrimination of osteoporotic cases [Benhamou et al, 2001]

Hmean = 0.679 £0.053  Hmean = 0.696 £ 0.030
(osteoporotic) (control)



Fractional Brownian motion

For H € (0, 1), the standard fractional Brownian motion [Kolmogorov,
1940], [Mandelbrot and Van Ness, 1968] By = {By (t);t € R} is a
centered Gaussian process with stationary increments such that

Cov (Br(t), Bu(s)) = 5 (vu(t) + vu(s) — vu(t —s)),

1
2

with Vt,s € R, vy(t) =E ((BH(s 1) - BH(s))2) = |¢[2H.
Main Properties :

fdd

> H self-similarity : VA > 0, By(\.) = ABy(.).

» H a.s. critical Holder exponent :
|Br(t) — Bu(s)| < C|t —s|"| log(|t — s|)['/2 as.

» H a.s. fractal dimension :

dims, ({(r, Bu(t)), t € [0, 1]}) —2_Has.



Generalizations in dimension d

Spectral representation : for v(H) = w/HI(2H) sin(H~),

Vt € R, VH /|e'f< 1| y(H 1|§\ 2H=1 g¢.

varlogramme spectral density

Bochner Theorem : when 1 is a Levy measure on RY and
Vx € RY, v(x) = / ‘eix'g — 1|2 du(€)
RrRd

(x,¥) = % (v(x) + v(y) — v(x — y)) is the covariance function of a
centered Gaussian random field with stationary increments.



Anisotropic fractional Brownian field

[Bonami, Estrade, 2003] for ¢ : S~ — R* even in L}(S9~1) and
h: 5971 — (0,1) even, the afBf X is defined with

ER
dux(€) = (g)ns d.

Main Properties : Let H =  essinf  (h(6)).
0€S9-1,¢(0)>0

fdd
)=

> H self-similarity iff h = H a.e. : YA > 0, X(\. MX().

» H a.s. critical Holder exponent :
IX(x) = X(¥)| < Clix = y[|"log(||x — yI)[/* as.
» H a.s. fractal dimension :

dims, ({(X,X(x)),x e o, 1]d}) —d+1-Has.

» lIsotropy if h=H and c = essmf( ) a.e. (fBf) :
S -1

OF

VR rotation, X(R.) = fd



Simulation of a Gaussian vector

Let Y centered Gaussian vector of size n and covariance
Cy € Mpy(R) then

Y £ Rye, with Cy = RyR% and e, ~ N(0, I,).

Choleski method : to find Ry cost O(n?).
Circulant matrix : when Cy = circ(c) with c = (co ¢y ... cp_1) ie

Co Ch—1 .. C (&1
c1 co Cn—1 %]
Cy = . C1 Co
Ch—2 - o Cp—1
Ch—1 Cp—2 e (o} Co

then Cy = LFdiag(F,c)F, with F, the matrix of discrete Fourier
transform. Let R, = %F,j‘diag(Fnc)l/2 € M,(C) then

Y £ R(Ro(eL + ic2)) with 1,2 iid A(0, ).

Cost O(nlog(n)) for n = 2°.



Application to a stationary Gaussian process

I0) rn N )
Assume that Cov( Y/, Y)) = ri sit. Cy =

o
Embedding in a circulant matrix S = circ(s) with

s=(rorn ... tal-.] =1 ... r1) of size M >2n
such that
S= < & 5 ) satisfies S = S*.
* 52

If Fiys > 0 then S covariance and Y < (Zo,....2Z,) for Z~N(0,S).

Remark : this is often difficult to find s satisfying this condition.



Fast and exact synthesis of 1d fBm

Let H € (0,1) and By a fBm. The fractional gaussian noise is defined as
Yix = Bu(k + 1) — By(k) so that

1
re = Cov(Yirr, Y1) = 5 (Ik + 12 = 2|k|P" + |k — 1) .

Theorem [Perrin et al, 2002] : Vn> 1, S =circ(ror ... fnta—1 ... 1) is
a covariance matrix.

Since By(0) =0 a.s., By(k) = >, Yi for k> 1 and

» by stationarity of the increments

(Br (K)) - meksn-m = ( 2 Yi-) YI)
—m<k<n—m

I<k+m I<m
» by self-similarity

(Bt (AK))o<secn = AP (Bi (K))o<sen -



Extension to 2d Gaussian fields

= \When stationarity and Cov( Yk +4 ko+s Y, ) = ks ke USe a block
Toeplitz covariance matrix with Toeplitz block and embed with a block
circulant matrix [Chan, Wood, 1994, Dietrich, Newsam, 1997]

= \When only stationarity increments simulate the increments but the
initial conditions are correlated [Kaplan, Kuo, 1996]

w For the fBf approximate by a stationary field with compactly suported
covariance function for which the circulant embedding matrix algorithm
is running [Stein, 2002, Gneiting et al, 2006]

w Conditional simulation procedure when conditional covariances are
known [Emery, Lantuejoul, 2006, Brouste et al, 2007]



Turning band method [Matheron, 1973]

When Y is a centered stationary process with covariance
Cy(t,s) = ry(t —s) and U ~ U(S?) define the field
Z(x) = Y(x - U) for x € R?
such that with u(8) = (cos(6),sin()),
1 /2
() = CouZ(x + ). Z0) = 1+ [ rvix- u(®))d.
—m/2

Then Z is a centered stationary isotropic field (not Gaussian).
Defining for 61,...,0x € [-7/2,7/2] and A1,..., Ak € RT

K
Zk(x) = Z \/)T,-Y(")(x ~u(0:)),
i=1

with Y Y(K) independent realizations of Y the field Zx is a
centered stationary field with

rk(x) = Z Airy (x - u(0;)).



Variogram of anisotropic fractional Brownian field

Let X be an afBf and recall that v(H) = 7 /HI'(2H) sin(H~).

o) = [ lexe=1f e(e/lenel D 2de

2T +o00
A /O

. 2
e/r(x~u(9)) _ 1‘ C(e)r—2h(9)—ldrd9

/2
= [ Ao ul6) O
—m/2
Let (B(()e ))1<,<K |ndependent realizations of 1d fBm and define
Zv A(h(6:))c(07) By, (x - u(67)).
Then, dkor(Xk(x), X(x)) = sup|P(Xk(x) <t)—P(X(x) < t)
teR

< 2lvk(x) = v(x)[/v(x),

with vk (x Z)\,'y 0;)|x - u(6;)|2"%)



Choice of lines

To simulate Bl(’?(;’_)(x~ u(6;)) for x € [0,1]> N n=1Z2 one has to simulate
B K cos(6;) + ! sin(0;) | for0 < k,/<n
h(ei) n ! n ! - =

When cos(0;) # 0 choose 0; such that tan(6;) = 2 with p; € Z and
g; € N such that

Bl K cos(6;) + isin(t?-) raa (cos(0:) " (B(i) (kgi + |, ))
h(6;) n i n i o - ng; h(6;) qgi Pi "y .
Cost : O(n(|pi| + a7 log(n(|pi| + 7))

= Choice of (6;) that minimizes the cost via dynamic programming.



Choice of weights

» Rectangle rule : h, c piecewize C!, \; = M then
drol( Xk (x), X(x)) = O(K~ min(2H71))

[4

. . . i1 —0i_
» Trapezoidal rule : h, c piecewize C?, \; = —H25—=% then

dikol(Xk(x), X(x)) = O(K~minCH)=1 |5g(K))

Moreover, these hold uniformly on x in a compact set when h is constant.

For comparison in general the TBMs lead to a non-Gaussian field for
which the Kolmogorov distance is O(K~1/2) by Berry-Esseen Theorem
(see [Emery, Lantuejoul, 2008] for FBF)



Realizations of Xk for X fBf with h=H =02and c=1

3

=113
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Elementary afBf

Let o € (0,7/2], ¢ = 1(_4,q) 7-periodic and h = H € (0,1). Let X,, , be
the corresponding afBf varlogram Then, for y(H) = w/HI(2H) sin(H~)

Vx € R, v, . (x) = 2"y (H) Cu(arg (x)) | x|,

where C is a 7 periodic function defined on (-7 /2,7 /2] by

3, 1—sin§o¢—«9)) + 8, 1+sin§a+9) if —a<6+I<a
CH(@) _ ﬂH 1+5|n(o¢ 0) + /BH lfsin2(a+0) if a<6— g <a
BH 1— sméa 0) 7[3” 1+sin§a+0) otherwize

with B,,(t) = [y uP"~1/2(1 — u)"=/2du is a Beta incomplete function.



a=17/6
Realizations of approximations of X, . for K = 5900 and H = 0.5
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H1 =02, H, =05

H1 =02, H.=0.38

Hy =05, H. =038
Realizations of Xk for K =517, ¢ = 1 with h(0) = Hi and h(+n/2) = Ho,
elementary (top), linear (middle), smooth (bottom)

=] 5
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C2=5

c =100 c2 = 1000
Realizations of Xk for K =517, h = H = 0.5 with ¢(0) = ¢; and
c(£7/2) = c2, elementary (top), linear (middle), smooth (bottom)

=] 5
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